Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

Overview

PWC

PWC

PWC

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham, Guillaume Thibault, Lucas Pagano, Archana Machireddy, Joe Gray, Young Hwan Chang and Xubo Song.

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for SenFormer.


💾 Code Snippet (SenFormer)| ⌨️ Code Snippet (FPNT)| 📜 Paper | 论文

🔨 Installation

Conda environment

  • Clone this repository and enter it: git clone [email protected]:WalBouss/SenFormer.git && cd SenFormer.
  • Create a conda environment conda create -n senformer python=3.8, and activate it conda activate senformer.
  • Install Pytorch and torchvision conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch — (you may also switch to other version by specifying the version number).
  • Install MMCV library pip install mmcv-full==1.4.0
  • Install MMSegmentation library by running pip install -e . in SenFormer directory.
  • Install other requirements pip install timm einops

Here is a full script for setting up a conda environment to use SenFormer (with CUDA 10.2 and pytorch 1.7.1):

conda create -n senformer python=3.8
conda activate senformer
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch

git clone [email protected]:WalBouss/SenFormer.git && cd SenFormer
pip install mmcv-full==1.4.0
pip install -e .
pip install timm einops

Datasets

For datasets preparations please refer to MMSegmentation guidelines.

Pretrained weights

ResNet pretrained weights will be automatically downloaded before training.

For Swin Transformer ImageNet pretrained weights, you can either:

  • run bash tools/download_swin_weights.sh in SenFormer project to download all Swin Transformer pretrained weights (it will place weights under pretrain/ folder ).
  • download desired backbone weights here: Swin-T, Swin-S, Swin-B, Swin-L and place them under pretrain/ folder.
  • download weights from official repository then, convert them to mmsegmentation format following mmsegmentation guidelines.

🎯 Model Zoo

SenFormer models with ResNet and Swin's backbones and ADE20K, COCO-Stuff 10K, Pascal Context and Cityscapes.

ADE20K

Backbone mIoU mIoU (MS) #params FLOPs Resolution Download
ResNet-50 44.6 45.6 144M 179G 512x512 model config
ResNet-101 46.5 47.0 163M 199G 512x512 model config
Swin-Tiny 46.0 46.4 144M 179G 512x512 model config
Swin-Small 49.2 50.4 165M 202G 512x512 model config
Swin-Base 51.8 53.2 204M 242G 640x640 model config
Swin-Large 53.1 54.2 314M 546G 640x640 model config

COCO-Stuff 10K

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 39.0 39.7 144M 512x512 model config
ResNet-101 39.6 40.6 163M 512x512 model config
Swin-Large 49.1 50.1 314M 512x512 model config

Pascal Context

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 53.2 54.3 144M 480x480 model config
ResNet-101 55.1 56.6 163M 480x480 model config
Swin-Large 62.4 64.0 314M 480x480 model config

Cityscapes

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 78.8 80.1 144M 512x1024 model config
ResNet-101 80.3 81.4 163M 512x1024 model config
Swin-Large 82.2 83.3 314M 512x1024 model config

🔭 Inference

Download one checkpoint weights from above, for example SenFormer with ResNet-50 backbone on ADE20K:

Inference on a dataset

# Single-gpu testing
python tools/test.py senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file

# Multi-gpu testing
./tools/dist_test.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file <GPU_NUM>

# Multi-gpu, multi-scale testing
tools/dist_test.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file <GPU_NUM> --aug-test

Inference on custom data

To generate segmentation maps for your own data, run the following command:

python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE}

Run python demo/image_demo.py --help for additional options.

🔩 Training

Follow above instructions to download ImageNet pretrained weights for backbones and run one of the following command:

# Single-gpu training
python tools/train.py path/to/model/config 

# Multi-gpu training
./tools/dist_train.sh path/to/model/config <GPU_NUM>

For example to train SenFormer with a ResNet-50 as backbone on ADE20K:

# Single-gpu training
python tools/train.py senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py 

# Multi-gpu training
./tools/dist_train.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py <GPU_NUM>

Note that the default learning rate and training schedule is for an effective batch size of 16, (e.g. 8 GPUs & 2 imgs/gpu).

Acknowledgement

This code is build using MMsegmentation library as codebase and uses timm and einops as well.

📚 Citation

If you find this repository useful, please consider citing our work 📝 and giving a star 🌟 :

@article{bousselham2021senformer,
  title={Efficient Self-Ensemble Framework for Semantic Segmentation},
  author={Walid Bousselham, Guillaume Thibault, Lucas Pagano, Archana Machireddy, Joe Gray, Young Hwan Chang, Xubo Song},
  journal={arXiv preprint arXiv:2111.13280},
  year={2021}
}
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022