Code for IntraQ, PyTorch implementation of our paper under review

Overview

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper

Requirements

Python >= 3.7.10

Pytorch == 1.7.1

Reproduce results

Stage1: Generate data.

cd data_generate

Please install all required package in requirements.txt.

"--save_path_head" in run_generate_cifar10.sh/run_generate_cifar100.sh is the path where you want to save your generated data pickle.

For cifar10/100

bash run_generate_cifar10.sh
bash run_generate_cifar100.sh

For ImageNet

"--save_path_head" in run_generate.sh is the path where you want to save your generated data pickle.

"--model" in run_generate.sh is the pre-trained model you want (also is the quantized model). You can use resnet18/mobilenet_w1/mobilenetv2_w1.

bash run_generate.sh

Stage2: Train the quantized network

cd ..
  1. Modify "qw" and "qa" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to select desired bit-width.

  2. Modify "dataPath" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to the real dataset path (for construct the test dataloader).

  3. Modify the "Path_to_data_pickle" in main_direct.py (line 122 and line 135) to the data_path and label_path you just generate from Stage1.

  4. Use the below commands to train the quantized network. Please note that the model that generates the data and the quantized model should be the same.

For cifar10/100

python main_direct.py --model_name resnet20_cifar10 --conf_path cifar10_resnet20.hocon --id=0

python main_direct.py --model_name resnet20_cifar100 --conf_path cifar100_resnet20.hocon --id=0

For ImageNet, you can choose the model by modifying "--model_name" (resnet18/mobilenet_w1/mobilenetv2_w1)

python main_direct.py --model_name resnet18 --conf_path imagenet.hocon --id=0

Evaluate pre-trained models

The pre-trained models and corresponding logs can be downloaded here

Please make sure the "qw" and "qa" in *.hocon, *.hocon, "--model_name" and "--model_path" are correct.

For cifar10/100

python test.py --model_name resnet20_cifar10 --model_path path_to_pre-trained model --conf_path cifar10_resnet20.hocon

python test.py --model_name resnet20_cifar100 --model_path path_to_pre-trained model --conf_path cifar100_resnet20.hocon

For ImageNet

python test.py --model_name resnet18/mobilenet_w1/mobilenetv2_w1 --model_path path_to_pre-trained model --conf_path imagenet.hocon

Results of pre-trained models are shown below:

Model Bit-width Dataset Top-1 Acc.
resnet18 W4A4 ImageNet 66.47%
resnet18 W5A5 ImageNet 69.94%
mobilenetv1 W4A4 ImageNet 51.36%
mobilenetv1 W5A5 ImageNet 68.17%
mobilenetv2 W4A4 ImageNet 65.10%
mobilenetv2 W5A5 ImageNet 71.28%
resnet-20 W3A3 cifar10 77.07%
resnet-20 W4A4 cifar10 91.49%
resnet-20 W3A3 cifar100 64.98%
resnet-20 W4A4 cifar100 48.25%
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022