Download and preprocess popular sequential recommendation datasets

Overview

Build Status codebeat badge

Sequential Recommendation Datasets

This repository collects some commonly used sequential recommendation datasets in recent research papers and provides a tool for downloading, preprocessing and batch-loading those datasets. The preprocessing method can be customized based on the task, for example: short-term recommendation (including session-based recommendation) and long-short term recommendation. Loading has faster version which intergrates the DataLoader of PyTorch.

Datasets

Install this tool

Stable version

pip install -U srdatasets —-user

Latest version

pip install git+https://github.com/guocheng2018/sequential-recommendation-datasets.git --user

Download datasets

Run the command below to download datasets. As some datasets are not directly accessible, you'll be warned to download them manually and place them somewhere it tells you.

srdatasets download --dataset=[dataset_name]

To get a view of downloaded and processed status of all datasets, run

srdatasets info

Process datasets

The generic processing command is

srdatasets process --dataset=[dataset_name] [--options]

Splitting options

Two dataset splitting methods are provided: user-based and time-based. User-based means that splitting is executed on every user behavior sequence given the ratio of validation set and test set, while time-based means that splitting is based on the date of user behaviors. After splitting some dataset, two processed datasets are generated, one for development, which uses the validation set as the test set, the other for test, which contains the full training set.

--split-by     User or time (default: user)
--test-split   Proportion of test set to full dataset (default: 0.2)
--dev-split    Proportion of validation set to full training set (default: 0.1)

NOTE: time-based splitting need you to manually input days at console by tipping you total days of that dataset, since you may not know.

Task related options

For short term recommnedation task, you use previous input-len items to predict next target-len items. To make user interests more focused, user behavior sequences can also be cut into sessions if session-interval is given. If the number of previous items is smaller than input-len, 0 is padded to the left.

For long and short term recommendation task, you use pre-sessions previous sessions and current session to predict target-len items. The target items are picked randomly or lastly from current session. So the length of current session is max-session-len - target-len while the length of any previous session is max-session-len. If any previous session or current session is shorter than the preset length, 0 is padded to the left.

--task              Short or long-short (default: short)
--input-len         Number of previous items (default: 5)
--target-len        Number of target items (default: 1)
--pre-sessions      Number of previous sessions (default: 10)
--pick-targets      Randomly or lastly pick items from current session (default: random)
--session-interval  Session splitting interval (minutes)  (default: 0)
--min-session-len   Sessions less than this in length will be dropped  (default: 2)
--max-session-len   Sessions greater than this in length will be cut  (default: 20)

Common options

--min-freq-item        Items less than this in frequency will be dropped (default: 5)
--min-freq-user        Users less than this in frequency will be dropped (default: 5)
--no-augment           Do not use data augmentation (default: False)
--remove-duplicates    Remove duplicated items in user sequence or user session (if splitted) (default: False)

Dataset related options

--rating-threshold  Interactions with rating less than this will be dropped (Amazon, Movielens, Yelp) (default: 4)
--item-type         Recommend artists or songs (Lastfm) (default: song)

Version

By using different options, a dataset will have many processed versions. You can run the command below to get configurations and statistics of all processed versions of some dataset. The config id shown in output is a required argument of DataLoader.

srdatasets info --dataset=[dataset_name]

DataLoader

DataLoader is a built-in class that makes loading processed datasets easy. Practically, once initialized a dataloder by passing the dataset name, processed version (config id), batch_size and a flag to load training data or test data, you can then loop it to get batch data. Considering that some models use rank-based learning, negative sampling is intergrated into DataLoader. The negatives are sampled from all items except items in current data according to popularity. By default it (negatives_per_target) is turned off. Also, the time of user behaviors is sometimes an important feature, you can include it into batch data by setting include_timestmap to True.

Arguments

  • dataset_name: dataset name (case insensitive)
  • config_id: configuration id
  • batch_size: batch size (default: 1)
  • train: load training dataset (default: True)
  • development: load the dataset aiming for development (default: False)
  • negatives_per_target: number of negative samples per target (default: 0)
  • include_timestamp: add timestamps to batch data (default: False)
  • drop_last: drop last incomplete batch (default: False)

Attributes

  • num_users: total users in training dataset
  • num_items: total items in training dataset (not including the padding item 0)

Initialization example

from srdatasets.dataloader import DataLoader

trainloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=True, negatives_per_target=5, include_timestamp=True)
testloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=False, include_timestamp=True)

For pytorch users, there is a wrapper implementation of torch.utils.data.DataLoader, you can then set keyword arguments like num_workers and pin_memory to speed up loading data

from srdatasets.dataloader_pytorch import DataLoader

trainloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=True, negatives_per_target=5, include_timestamp=True, num_workers=8, pin_memory=True)
testloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=False, include_timestamp=True, num_workers=8, pin_memory=True)

Iteration template

For short term recommendation task

for epoch in range(10):
    # Train
    for users, input_items, target_items, input_item_timestamps, target_item_timestamps, negative_samples in trainloader:
        # Shape
        #   users:                  (batch_size,)
        #   input_items:            (batch_size, input_len)
        #   target_items:           (batch_size, target_len)
        #   input_item_timestamps:  (batch_size, input_len)
        #   target_item_timestamps: (batch_size, target_len)
        #   negative_samples:       (batch_size, target_len, negatives_per_target)
        #
        # DataType
        #   numpy.ndarray or torch.LongTensor
        pass

    # Test
    for users, input_items, target_items, input_item_timestamps, target_item_timestamps in testloader:
        pass

For long and short term recommendation task

for epoch in range(10):
    # Train
    for users, pre_sessions_items, cur_session_items, target_items, pre_sessions_item_timestamps, cur_session_item_timestamps, target_item_timestamps, negative_samples in trainloader:
        # Shape
        #   users:                          (batch_size,)
        #   pre_sessions_items:             (batch_size, pre_sessions * max_session_len)
        #   cur_session_items:              (batch_size, max_session_len - target_len)
        #   target_items:                   (batch_size, target_len)
        #   pre_sessions_item_timestamps:   (batch_size, pre_sessions * max_session_len)
        #   cur_session_item_timestamps:    (batch_size, max_session_len - target_len)
        #   target_item_timestamps:         (batch_size, target_len)
        #   negative_samples:               (batch_size, target_len, negatives_per_target)
        #
        # DataType
        #   numpy.ndarray or torch.LongTensor
        pass

    # Test
    for users, pre_sessions_items, cur_session_items, target_items, pre_sessions_item_timestamps, cur_session_item_timestamps, target_item_timestamps in testloader:
        pass

Disclaimers

This repo does not host or distribute any of the datasets, it is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022