Julia package for multiway (inverse) covariance estimation.

Overview

TensorGraphicalModels

TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inverse covariance matrices.

Installation

] add https://github.com/ywa136/TensorGraphicalModels.jl

Examples

Please check out a Julia colab created for illustration of some functionalities of the package. Here are some basic examples as well:

Example code for fitting a KP inverse covariance model:

using TensorGraphicalModels

model_type = "kp"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list) #multi-dimensional array (tensor) of dimension d_1 × … × d_K × N
Ψ_hat_list = kglasso(X)

Example code for fitting a KS inverse covariance model:

using TensorGraphicalModels

model_type = "ks"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list, tensorize_out = false) #matrix of dimension d × N

# compute the mode-k Gram matrices (the sufficient statistics for TeraLasso)
X_kGram = [zeros(d_list[k], d_list[k]) for k = 1:K]
Xk = [zeros(d_list[k], Int(prod(d_list) / d_list[k])) for k = 1:K]
for k = 1:K
    for i = 1:N
        copy!(Xk[k], tenmat(reshape(view(X, :, i), d_list), k))
        mul!(X_kGram[k], Xk[k], copy(transpose(Xk[k])), 1.0 / N, 1.0)
    end
end

Ψ_hat_list, _ = teralasso(X_kGram)

Example code for fitting a Sylvester inverse covariance model:

using TensorGraphicalModels

model_type = "sylvester"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list, tensorize_out = false) #matrix of dimension d × N

# compute the mode-k Gram matrices (the sufficient statistics for TeraLasso)
X_kGram = [zeros(d_list[k], d_list[k]) for k = 1:K]
Xk = [zeros(d_list[k], Int(prod(d_list) / d_list[k])) for k = 1:K]
for k = 1:K
    for i = 1:N
        copy!(Xk[k], tenmat(reshape(view(X, :, i), d_list), k))
        mul!(X_kGram[k], Xk[k], copy(transpose(Xk[k])), 1.0 / N, 1.0)
    end
end

Psi0 = [sparse(eye(d_list[k])) for k = 1:K]
fun = (iter, Psi) -> [1, time()] # NULL func
lambda = [sqrt(px[k] * log(prod(d_list)) / N) for k = 1:K] 

Ψ_hat_list, _ = syglasso_palm(X, X_kGram, lambda, Psi0, fun = fun)

Example code for fitting a KPCA covariance model:

using TensorGraphicalModels

px = py = 25 #works for K=2 modes only
N = 100
X = zeros((px * py, N))

for i=1:N
    X[:, i] .= vec(rand(MatrixNormal(zeros((px, py)), ScalMat(px, 2.0), ScalMat(py, 4.0))))
end

S = cov(copy(X')) #sample covariance matrix
lambdaL = 20 * (px^2 + py^2 + log(max(px, py, N))) / N
lambdaS = 20 * sqrt(log(px * py)/N)

# robust Kronecker PCA methods using singular value thresholding
Sigma_hat = robust_kron_pca(S, px, py, lambdaL, lambdaS, "SVT"; tau = 0.5, r = 5)
Owner
Wayne Wang
Ph.D. candidate in statistics
Wayne Wang
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022