Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Overview

Spectral Nonlocal Block

Overview

Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21)

Spectral View of Nonlocal Block

Our work provide a novel perspective for the model design of non-local blocks called the Spectral View of Non-local. In this view, the non-local block can be seen as operating a set of graph filters on a fully connected weighted graph. Our spectral view can help to therorotivally anaylize exsiting non-local blocks and design novel non-local block with the help of graph signal processing (e.g. the graph neural networks).

Spectral Nonlocal Block

This repository gives the implementation of Spectral Nonlocal Block (SNL) that is theoreotically designed with the help of first-order chebyshev graph convolution. The structure of the SNL is given below:

Two main differences between SNL and exisiting nonlocals, which make SNL can concern the graph spectral:

  1. The SNL using a symmetrical affinity matrix to ensure that the graph laplacian of the fully connected weighted graph is diagonalizable.
  2. The SNL using the normalized laplacian to conform the upper bound of maximum eigenvalue (equal to 2) for arbitrary graph structure.

More novel nonlocal blocks defined with other type graph filters will release soon, for example Cheby Filter, Amma Filter, and the Cayley Filter.

Getting Starte

Requirements

PyTorch >= 0.4.1

Python >= 3.5

torchvision >= 0.2.1

termcolor >= 1.1.0

tensorboardX >= 1.9

opencv >= 3.4

Classification

To train the SNL:

  1. install the conda environment using "env.yml"
  2. Setting --data_dir as the root directory of the dataset in "train_snl.sh"
  3. Setting --dataset as the train/val dataset (cifar10/cifar100/imagenet)
  4. Setting --backbone as the backbone type (we suggest using preresnet for CIFAR and resnet for ImageNet)
  5. Setting --arch as the backbone deepth (we suggest using 20/56 for preresnet and 50 for resnet)
  6. Other parameter such as learning rate, batch size can be found/set in "train_val.py"
  7. run the code by: "sh train_snl.sh"
  8. the training log and checkpoint are saving in "save_model"

Semantic Segmentation

We also give the module/config implementated for semantic segmentation based on mmsegmentation framework, one can regist our SNL block and train our SNL for semantic segmentation (Cityscape) followed their step.

Citation

@InProceedings{Lei_2021_ICCV,
title = {Unifying Nonlocal Blocks for Neural Networks},
author = {Zhu, Lei and She, Qi and Li, Duo and Lu, Yanye and Kang, Xuejing and Hu, Jie and Wang, Changhu},
booktitle = {IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021}
}

Acknowledgement

This code and our experiments are conducted based on the release code of CGNL / mmsegmentation framework / 3D-ResNet framework. Here we thank for their remarkable works.

Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022