This repository contains the files for running the Patchify GUI.

Overview

Repository Name >> Train-Test-Validation-Dataset-Generation

App Name >> Patchify

Description >> This app is designed for crop images and creating small patches of a large image e.g. Satellite/Aerial Images, which will then be used for training and testing Deep Learning models specifically semantic segmentation models.

Functionalities: Patchify is capable of:

  • Crop the large image into small patches based on the user-defined patch window-size and patch stride/step independently in two x and y directions.
  • Augmenting the cropped dataset to expand the size of the training dataset and make the model to improve the model performance with better generalizing for unseen samples.
  • Dividing the created dataset into different Train, Test, and Validation dataset with user defined percentages.

A picture of Patchify App is shown below:

Parameters:

  • Input Image: is the input large image need to be cropped into small patches. It can be whether raster or its label image. (The produced results will in the same format as the input image)

  • Export Folder: is the directory for saving the generated cropped patches.

  • Window Size: is the size of the cropping window which is equal to the size of the generated small patches. (X is the patch/cropped images' length in X direction and Y is their length in Y direction.)

  • Stride: is the step size of the moving window for generating the patches. It can move in different step sizes in X and Y directions.

  • Output name: is the constant part of the generated patches' name.

  • Training Percentage: is the percentage of Total generated patches goes into Training Dataset.

  • Testing Percentage: is the percentage of Total generated patches goes into Testing Dataset.

  • Validation Percentage: is the percentage of Total generated patches goes into Validation Dataset.

  • Original Image: is the original version of the cropped patch at the location of moving/sliding window.

  • Rotate 90 Degrees: is the version of original image rotated 90 degrees clockwise.

  • Rotate 180 Degrees: is the version of original image rotated 180 degrees clockwise.

  • Rotate 270 Degrees: is the version of original image rotated 270 degrees clockwise.

  • Flip Vertically: is the version of original image flipped vertically.

  • Flip Horizontally: is the version of original image flipped horizontally.

  • Flip Verticall and Horizontally: is the version of original image flipped both vertically and horizontally .

  • Start Patching: starts the patching operations based on the selected parameters.

  • Cancel: is the button for stopping the patching operations and/or closing the Patchify App.

  • Augmentation section has two buttoms. All button selects all the augmentation methods. In case a different format should be checked manually, the Custom Selection can be selected.

Important Notes:

  • if none of the Train, Testing, Validation percentages is filled, Then the Results will only produce Total cropped patches and the dataset spliting section won't run.
  • Make sure you have selected an image, the destination folder for storing and the generated patch name before pressing "Start Patchify" button.

Implementation:

patchify.py is the only file you need to run. But before make sure you have installed all the required python libraries including opencv, PyQt5. Be sure to use the latest version of pip along with python 3.7

Owner
Salar Ghaffarian
Remote Sensing and GIScientist - MSc in Geomatics Engineering - I am specialist in using Deep learning, Computer vision, and machine learning methods.
Salar Ghaffarian
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023