Distributional Sliced-Wasserstein distance code

Related tags

Deep LearningDSW
Overview

Distributional Sliced Wasserstein distance

This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Generative Modeling". The work was done during the residency at VinAI Research, Hanoi, Vietnam.

Requirement

  • python3.6
  • pytorch 1.3
  • torchvision
  • numpy
  • tqdm

Train on MNIST and FMNIST

python mnist.py \
    --datadir='./' \
    --outdir='./result' \
    --batch-size=512 \
    --seed=16 \
    --p=2 \
    --lr=0.0005 \
    --dataset='MNIST'
    --model-type='DSWD'\
    --latent-size=32 \ 
model-type in (SWD|MSWD|DSWD|GSWD|DGSWD|JSWD|JMSWD|JDSWD|JGSWD|JDGSWD|MGSWNN|JMGSWNN|MGSWD|JMGSWD)

Options for Sliced distances (number of projections used to approximate the distances)

--num-projection=1000

Options for Max Sliced-Wasserstein distance and Distributional distances (number of gradient steps for find the max slice or the optimal push-forward function):

--niter=10

Options for Distributional Sliced-Wasserstein Distance and Distributional Generalized Sliced-Wasserstein Distance (regularization strength)

--lam=10

Options for Generalized Wasserstein Distance (using circular function for Generalized Radon Transform)

--r=1000;\
--g='circular'

Train on CELEBA and CIFAR10 and LSUN

python main.py \
    --datadir='./' \
    --outdir='./result' \
    --batch-size=512 \
    --seed=16 \
    --p=2 \
    --lr=0.0005 \
    --model-type='DSWD'\
    --dataset='CELEBA'
    --latent-size=100 \ 
model-type in (SWD|MSWD|DSWD|GSWD|DGSWD|CRAMER)

Options for Sliced distances (number of projections used to approximate the distances)

--num-projection=1000

Options for Max Sliced-Wasserstein distance and Distributional distances (number of gradient steps for find the max slice or the optimal push-forward function):

--niter=1

Options for Distributional Sliced-Wasserstein Distance and Distributional Generalized Sliced-Wasserstein Distance (regularization strength)

--lam=1

Options for Generalized Wasserstein Distance (using circular function for Generalized Radon Transform)

--r=1000;\
--g='circular'

Some generated images

MNIST generated images

MNIST

CELEBA generated images

MNIST

LSUN generated images

MNIST

Owner
VinAI Research
VinAI Research
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022