The implementation for the SportsCap (IJCV 2021)

Overview

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos

ProjectPage | Paper | Video | Dataset (Part01|Part02)

Xin Chen, Anqi Pang, Wei Yang, Yuexin Ma, Lan Xu, Kun Zhou, Jingyi Yu.

This repository contains the official implementation for the paper: SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos (IJCV 2021). Our work is capable of simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input.

Abstract

Markerless motion capture and understanding of professional non-daily human movements is an important yet unsolved task, which suffers from complex motion patterns and severe self-occlusion, especially for the monocular setting. In this paper, we propose SportsCap -- the first approach for simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input. Our approach utilizes the semantic and temporally structured sub-motion prior in the embedding space for motion capture and understanding in a data-driven multi-task manner. Comprehensive experiments on both public and our proposed datasets show that with a challenging monocular sports video input, our novel approach not only significantly improves the accuracy of 3D human motion capture, but also recovers accurate fine-grained semantic action attributes.

Licenses

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

All material is made available under Creative Commons BY-NC-SA 4.0 license. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

The SMART Dataset

SportsCap proposes a challenging sports dataset called Sports Motion and Recognition Tasks (SMART) dataset, which contains per-frame action labels, manually annotated pose, and action assessment of various challenging sports video clips from professional referees.

Download

You can download the SMART dataset (17 GB, version 1.0) from the Google Drive [SMART_part01 | SMART_part02]. The SMART dataset includes source images (>60,000), annotations(>45,000, both pose and action), sport motion embedding spaces, videos (coming soon) and tools.

Annotation

Please load these JSON files in python to parse these annotations about 2D key-points of poses and fine-grained action labels.

Table_VideoInfo_diving.json
Table_VideoInfo_gym.json
Table_VideoInfo_polevalut_highjump_badminton.json

Tools

The tools folder includes several functions to load the annotation and calculate the pose variables. More useful scripts are coming soon.

utils.py - json_load, crop_img_skes, cal_body_bbox ...

Sports Motion Embedding Spaces

With the annotated 2D poses and MoCap 3D pose data, we collect the Sports Motion Embedding Spaces (SMES), the 2D/3D pose priors for various sports. SMES provides strong prior and regularization to ensure that the generated pose result lies in the corresponding action space.

Download

You can download the Motion Embedding Spaces (SMES) (7 MB, version 1.0) separately from GoogleDrive. The released SMES-V1.0 includes many sports, like vault, uneven bar, boxing, diving, hurdles, pole vault, high jump, and so on.

Usage

Coming soon.

Citation

If you find our code or paper useful, please consider citing:

@article{chen2021sportscap,
  title={SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos},
  author={Chen, Xin and Pang, Anqi and Yang, Wei and Ma, Yuexin and Xu, Lan and Yu, Jingyi},
  journal={arXiv preprint arXiv:2104.11452},
  year={2021}
}

Relevant Works

ChallenCap: Monocular 3D Capture of Challenging Human Performances using Multi-Modal References (CVPR Oral 2021)
Yannan He, Anqi Pang, Xin Chen, Han Liang, Minye Wu, Yuexin Ma, Lan Xu

TightCap: 3D Human Shape Capture with Clothing Tightness Field (Submit to TOG 2021)
Xin Chen, Anqi Pang, Wei Yang, Peihao Wang, Lan Xu, Jingyi Yu

AutoSweep: Recovering 3D Editable Objects from a Single Photograph (TVCG 2018)
Xin Chen, Yuwei Li, Xi Luo, Tianjia Shao, Jingyi Yu, Kun Zhou, Youyi Zheng

End-to-end Recovery of Human Shape and Pose (CVPR 2018)
Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik

Owner
Chen Xin
A Ph.D. Student of Computer Vision and Graphics
Chen Xin
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022