Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Related tags

Deep Learningpren
Overview

Primitive Representation Learning Network (PREN)

This repository contains the code for our paper accepted by CVPR 2021

Primitive Representation Learning for Scene Text Recognition

Ruijie Yan, Liangrui Peng, Shanyu Xiao, Gang Yao

For now we only provide code for PREN.

Requirements

  • python 3.7.9, pytorch 1.4.0, and torchvision 0.5.0
  • other libraries can be installed by
pip install -r requirements.txt

Recognition with pretrained model

We provide code for using our pretrained model to recognize text images.

  • The pretrained model can be downloaded via Baidu net disk: download_link key: 2txt

  • After downloading the pretrained model (pren.pth), put it in the "models" folder.

  • To recognize three samples in the "samples" folder, just run

python recog.py

The results would be

[Info] Load model from ./models/pren.pth
samples/001.jpg: ronaldo
samples/002.png: leaves
samples/003.jpg: salmon

Training

Two simple steps to train your own model:

  • Modify training configurations in Configs/trainConf.py
  • Run python train.py

To run the training code, please modify image_dir and train_list to your own training data.

image_dir is the path of training data root.

train_list is the path of a text file containing image paths (relative to image_dir) and corresponding labels.

For example, image_dir could be './samples', and train_list could be a text file with the following content

001.jpg RONALDO
002.png LEAVES
003.jpg SALMON

Evaluation

Similar to train, one can modify Configs/testConf.py and run python test.py to evaluate a model.

Acknowledgement

The code of EfficientNet is modified from EfficientNet-PyTorch, where we output multi-scale feature maps.

Citation

If you find this project helpful for your research, please cite our paper

@inproceedings{yan2021primitive,
  author    = {Yan, Ruijie and
               Peng, Liangrui and
               Xiao, Shanyu and
               Yao, Gang},
  title     = {Primitive Representation Learning for Scene Text Recognition},
  booktitle = {CVPR},
  year      = {2021}
}
Owner
Ruijie Yan
Ruijie Yan
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022