Puzzle-CAM: Improved localization via matching partial and full features.

Overview

PWC PWC

Puzzle-CAM

The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Citation

Please cite our paper if the code is helpful to your research. arxiv

@article{jo2021puzzle,
  title={Puzzle-CAM: Improved localization via matching partial and full features},
  author={Jo, Sanhyun and Yu, In-Jae},
  journal={arXiv preprint arXiv:2101.11253},
  year={2021}
}

Abstract

Weakly-supervised semantic segmentation (WSSS) is introduced to narrow the gap for semantic segmentation performance from pixel-level supervision to image-level supervision. Most advanced approaches are based on class activation maps (CAMs) to generate pseudo-labels to train the segmentation network. The main limitation of WSSS is that the process of generating pseudo-labels from CAMs which use an image classifier is mainly focused on the most discriminative parts of the objects. To address this issue, we propose Puzzle-CAM, a process minimizes the differences between the features from separate patches and the whole image. Our method consists of a puzzle module (PM) and two regularization terms to discover the most integrated region of in an object. Without requiring extra parameters, Puzzle-CAM can activate the overall region of an object using image-level supervision. In experiments, Puzzle-CAM outperformed previous state-of-the-art methods using the same labels for supervision on the PASCAL VOC 2012 test dataset.

Overview

Overall architecture


Prerequisite

  • Python 3.8, PyTorch 1.7.0, and more in requirements.txt
  • CUDA 10.1, cuDNN 7.6.5
  • 4 x Titan RTX GPUs

Usage

Install python dependencies

python3 -m pip install -r requirements.txt

Download PASCAL VOC 2012 devkit

Follow instructions in http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit

1. Train an image classifier for generating CAMs

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_classification_with_puzzle.py --architecture resnest101 --re_loss_option masking --re_loss L1_Loss --alpha_schedule 0.50 --alpha 4.00 --tag [email protected]@optimal --data_dir $your_dir

2. Apply Random Walk (RW) to refine the generated CAMs

2.1. Make affinity labels to train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 inference_classification.py --architecture resnest101 --tag [email protected]@optimal --domain train_aug --data_dir $your_dir
python3 make_affinity_labels.py --experiment_name [email protected]@[email protected]@scale=0.5,1.0,1.5,2.0 --domain train_aug --fg_threshold 0.40 --bg_threshold 0.10 --data_dir $your_dir

2.2. Train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 train_affinitynet.py --architecture resnest101 --tag [email protected]@Puzzle --label_name [email protected]@opt[email protected]@scale=0.5,1.0,1.5,[email protected]_fg=0.40_bg=0.10 --data_dir $your_dir

3. Train the segmentation model using the pseudo-labels

3.1. Make segmentation labels to train segmentation model.

CUDA_VISIBLE_DEVICES=0 python3 inference_rw.py --architecture resnest101 --model_name [email protected]@Puzzle --cam_dir [email protected]@op[email protected]@scale=0.5,1.0,1.5,2.0 --domain train_aug --data_dir $your_dir
python3 make_pseudo_labels.py --experiment_name [email protected]@[email protected]@[email protected][email protected] --domain train_aug --threshold 0.35 --crf_iteration 1 --data_dir $your_dir

3.2. Train segmentation model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag [email protected]@[email protected] --label_name [email protected]@[email protected]@[email protected][email protected]@crf=1 --data_dir $your_dir

4. Evaluate the models

CUDA_VISIBLE_DEVICES=0 python3 inference_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag [email protected]@[email protected] --scale 0.5,1.0,1.5,2.0 --iteration 10

python3 evaluate.py --experiment_name [email protected]@[email protected]@[email protected]=0.5,1.0,1.5,[email protected]=10 --domain val --data_dir $your_dir/SegmentationClass

5. Results

Qualitative segmentation results on the PASCAL VOC 2012 validation set. Top: original images. Middle: ground truth. Bottom: prediction of the segmentation model trained using the pseudo-labels from Puzzle-CAM. Overall architecture

Methods background aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor mIoU
Puzzle-CAM with ResNeSt-101 88.9 87.1 38.7 89.2 55.8 72.8 89.8 78.9 91.3 26.8 84.4 40.3 88.9 81.9 83.1 34.0 60.1 83.6 47.3 59.6 38.8 67.7
Puzzle-CAM with ResNeSt-269 91.1 87.2 37.3 86.8 61.4 71.2 92.2 86.2 91.8 28.6 85.0 64.1 91.8 82.0 82.5 70.7 69.4 87.7 45.4 67.0 37.7 72.2

For any issues, please contact Sanghyun Jo, [email protected]

Comments
  • ModuleNotFoundError: No module named 'core.sync_batchnorm'

    ModuleNotFoundError: No module named 'core.sync_batchnorm'

    `

    ModuleNotFoundError Traceback (most recent call last) in 1 from core.puzzle_utils import * ----> 2 from core.networks import * 3 from core.datasets import * 4 5 from tools.general.io_utils import *

    /working/PuzzleCAM/core/networks.py in 24 # Normalization 25 ####################################################################### ---> 26 from .sync_batchnorm.batchnorm import SynchronizedBatchNorm2d 27 28 class FixedBatchNorm(nn.BatchNorm2d):

    ModuleNotFoundError: No module named 'core.sync_batchnorm' `

    opened by Ashneo07 2
  • performance issue

    performance issue

    When I used the released weights for inference phase and evaluation, I found that the mIoU I got was different from the mIoU reported in the paper. I would like to ask whether this weight is corresponding to the paper, if it is, how to reproduce the result in your paper. Looking forward to your reply.

    PuzzleCAM PuzzleCAM2

    opened by linjiatai 0
  • Evaluation in classifier training is using supervised segmentation maps?

    Evaluation in classifier training is using supervised segmentation maps?

    Hello, thank you for the great repository! It's pretty impressive how organized it is.

    I have a critic (or maybe a question, in case I got it wrong) regarding the training of the classifier, though: I understand the importance of measuring and logging the mIoU during training (specially when creating the ablation section in your paper), however it doesn't strike me as correct to save the model with best mIoU. This procedural decision is based on fully supervised segmentation information, which should not be available for a truly weakly supervised problem; while resulting in a model better suited for segmentation. The paper doesn't address this. Am I right to assume all models were trained like this? Were there any trainings where other metrics were considered when saving the model (e.g. classification loss or Eq (7) in the paper)?

    opened by lucasdavid 0
  • error occured when image-size isn't 512 * n

    error occured when image-size isn't 512 * n

    dear author: I notice that if the image size isn't 512 x 512, it will have some error. I use image size 1280 x 496 and i got tensor size error at calculate puzzle module:the original feature is 31 dims and re_feature is 32 dims. So i have to change image size to 1280 x 512 and i work. So i think this maybe a little bug. It will better that you fixed it or add a notes in code~ Thanks for your job!

    opened by hazy-wu 0
  • the backbone of Affinitynet is resnet38. Why did you write resnet50?

    the backbone of Affinitynet is resnet38. Why did you write resnet50?

    In Table 2 of your paper, the backbone of Affinitynet is resnet38. Why did you write resnet50? After my experiment, I found that RW result reached 65.42% for Affinitynet which is based on resnet50 and higher than yours.

    opened by songyukino1 0
  • Ask for details of the training process!

    Ask for details of the training process!

    I am trying to train with ResNest101, and I also added affinity and RW. When I try to train, it runs according to the specified code. It is found that the obtained affinity labels are not effective, and the effect of pseudo_labels is almost invisible, which is close to the effect of all black. I don't know where the problem is, who can explain the details. help!

    opened by YuYue26 1
Releases(v1.0)
Owner
Sanghyun Jo
e-mail : [email protected] # DeepLearning #Computer Vision #AutoML #Se
Sanghyun Jo
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022