Laplace Redux -- Effortless Bayesian Deep Learning

Overview

Laplace Redux - Effortless Bayesian Deep Learning

This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Bayesian Deep Learning (NeurIPS 2021), using our library laplace.

Requirements

After cloning the repository and creating a new virtual environment, install the package including all requirements with:

pip install .

For the BBB baseline, please follow the instructions in the corresponding README.

For running the WILDS experiments, please follow the instructions for installing the WILDS library and the required dependencies in the WILDS GitHub repository. Our experiments also require the transformers library (as mentioned in the WILDS GitHub repo under the section Installation/Default models). Our experiments were run and tested with version 1.1.0 of the WILDS library.

Uncertainty Quantification Experiments (Sections 4.2 and 4.3)

The script uq.py runs the distribution shift (rotated (F)MNIST, corrupted CIFAR-10) and OOD ((F)MNIST and CIFAR-10 as in-distribution) experiments reported in Section 4.2, as well as the experiments on the WILDS benchmark reported in Section 4.3. It expects pre-trained models, which can be downloaded here; they should be placed in the models directory. Due to the large filesize the SWAG models are not included. Please contact us if you are interested in obtaining them.

To more conveniently run the experiments with the same parameters as we used in the paper, we provide some dedicated config files for the results with the Laplace approximation ({x/y} highlights options x and y); note that you might want to change the download flag or the data_root in the config file:

python uq.py --benchmark {R-MNIST/MNIST-OOD} --config configs/post_hoc_laplace/mnist_{default/bestood}.yaml
python uq.py --benchmark {CIFAR-10-C/CIFAR-10-OOD} --config configs/post_hoc_laplace/cifar10_{default/bestood}.yaml

The config files with *_default contains the default library setting of the Laplace approximation (LA in the paper) and *_bestood the setting which performs best on OOD data (LA* in the paper).

For running the baselines, take a look at the commands in run_uq_baslines.sh.

Continual Learning Experiments (Section 4.4)

Run

python continual_learning.py

to reproduce the LA-KFAC result and run

python continual_learning.py --hessian_structure diag

to reproduce the LA-DIAG result of the continual learning experiment in Section 4.4.

Training Baselines

In order to train the baselines, please note the following:

  • Symlink your dataset dir to your ~/Datasets, e.g. ln -s /your/dataset/dir ~/Datasets.
  • Always run the training scripts from the project's root directory, e.g. python baselines/bbb/train.py.
Owner
Runa Eschenhagen
Runa Eschenhagen
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022