SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

Overview

SelfAugment

Paper

@misc{reed2020selfaugment,
      title={SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning}, 
      author={Colorado Reed and Sean Metzger and Aravind Srinivas and Trevor Darrell and Kurt Keutzer},
      year={2020},
      eprint={2009.07724},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Using your own dataset.

To interface your own dataset, make sure that you carefully check the three main scripts to incorporate your dataset:

  1. main_moco.py
  2. main_lincls.py
  3. faa.py

Some things to check:

  1. Ensure that the sizing for your dataset is right. If your images are 32x32 (e.g. CIFAR10) - you should ensure that you are using the CIFAR10 style model, which uses a 3x3 input conv, and resizes images to be 28x28 instead of 224x224 (e.g. for ImageNet). This can make a big difference!
  2. If you want selfaugment to run quickly, consider using a small subset of your full dataset. For example, for ImageNet, we only use a small subset of the data - 50,000 random images. This may mean that you need to run unsupervised pretraining for longer than you usually do. We usually scale the number of epochs MoCov2 runs so that the number of total iterations is the same, or a bit smaller, for the subset and the full dataset.

Base augmentation.

If you want to find the base augmentation, then use slm_utils/submit_single_augmentations.py

This will result in 16 models, each with the results of self supervised training using ONLY the augmentation provided. slm_utils/submit_single_augmentations is currently using imagenet, so it uses a subset for this part.

Then you will need to train rotation classifiers for each model. this can be done using main_lincls.py

Train 5 Folds of MoCov2 on the folds of your data.

To get started, train 5 moco models using only the base augmentation. To do this, you can run python slm_utils/submit_moco_folds.py.

Run SelfAug

Now, you must run SelfAug on your dataset. Note - some changes in dataloaders may be necessary depending on your dataset.

@Colorado, working on making this process cleaner.

For now, you will need to go into faa_search_single_aug_minmax_w.py, and edit the config there. I will change this to argparse here soon. The most critical part of this is entering your checkpoint names in order of each fold under config.checkpoints.

Loss can be rotation, icl, icl_and_rotation. If you are doing icl_and_rotation, then you will need to normalize the loss_weights in loss_weight dict so that each loss is 1/(avg loss across k-folds) for each type of loss, I would just use the loss that was in wandb (rot train loss, and ICL loss from pretraining). Finally, you are trying to maximize negative loss with Ray, so a negative weighting in the loss weights means that the loss with that weight will be maximized.

Retrain using new augmentations found by SelfAug.

Just make sure to change the augmentation path to the pickle file with your new augmentations in load_policies function in get_faa_transforms.py Then, submit the job using slm_utils/submit_faa_moco.py

Owner
Colorado Reed
CS PhD student at Berkeley
Colorado Reed
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022