The code for paper "Learning Implicit Fields for Generative Shape Modeling".

Overview

implicit-decoder

The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang.

Project page | Paper

Improved TensorFlow1 implementation

Improved PyTorch implementation

Update

We have an improved implementation here, where we trained one model on the 13 ShapeNet categories.

We have a PyTorch implementation here.

Introduction

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder, called IM-NET, for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. IM-NET is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our implicit decoder for representation learning (via IM-AE) and shape generation (via IM-GAN), we demonstrate superior results for tasks such as generative shape modeling, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Citation

If you find our work useful in your research, please consider citing:

@article{chen2018implicit_decoder,
  title={Learning Implicit Fields for Generative Shape Modeling},
  author={Chen, Zhiqin and Zhang, Hao},
  journal={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}

Dependencies

Requirements:

Our code has been tested with Python 3.5, TensorFlow 1.8.0, CUDA 9.1 and cuDNN 7.0 on Ubuntu 16.04 and Windows 10.

Datasets and Pre-trained weights

The original voxel models and rendered views are from HSP. Since our network takes point-value pairs, the voxel models require further sampling. The sampling method can be found in our project page.

We provide the ready-to-use datasets in hdf5 format, together with our pre-trained network weights. The weights for IM-GAN is the ones we used in our demo video. The weights for IM-SVR is the ones we used in the experiments in our paper.

Backup links:

Usage

For data preparation, please see directory point_sampling.

To train an autoencoder, go to IMGAN and use the following commands for progressive training. You may want to copy the commands in a .bat or .sh file.

python main.py --ae --train --epoch 50 --real_size 16 --batch_size_input 4096
python main.py --ae --train --epoch 100 --real_size 32 --batch_size_input 8192
python main.py --ae --train --epoch 200 --real_size 64 --batch_size_input 32768

The above commands will train the AE model 50 epochs in 163 resolution (each shape has 4096 sampled points), then 50 epochs in 323 resolution, and finally 100 epochs in 643 resolution.

To train a latent-gan, after training the autoencoder, use the following command to extract the latent codes:

python main.py --ae

Then train the latent-gan and get some samples:

python main.py --train --epoch 10000
python main.py

You can change some lines in main.py to adjust the number of samples and the sampling resolution.

To train the network for single-view reconstruction, after training the autoencoder, copy the weights and latent codes to the corresponding folders in IMSVR. Go to IMSVR and use the following commands to train IM-SVR and get some samples:

python main.py --train --epoch 1000
python main.py

License

This project is licensed under the terms of the MIT license (see LICENSE for details).

Owner
Zhiqin Chen
Video game addict.
Zhiqin Chen
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Namish Khanna 40 Oct 11, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022