Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Overview

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer

arXiv

Description

Convert offline handwritten mathematical expression to LaTeX sequence using bidirectionally trained transformer.

How to run

First, install dependencies

# clone project   
git clone https://github.com/Green-Wood/BTTR

# install project   
cd BTTR
conda create -y -n bttr python=3.7
conda activate bttr
conda install --yes -c pytorch pytorch=1.7.0 torchvision cudatoolkit=<your-cuda-version>
pip install -e .   

Next, navigate to any file and run it. It may take 6~7 hours to coverage on 4 gpus using ddp.

# module folder
cd BTTR

# train bttr model using 4 gpus and ddp
python train.py --config config.yaml  

For single gpu user, you may change the config.yaml file to

gpus: 1
# gpus: 4
# accelerator: ddp

Imports

This project is setup as a package which means you can now easily import any file into any other file like so:

from bttr.datamodule import CROHMEDatamodule
from bttr import LitBTTR
from pytorch_lightning import Trainer

# model
model = LitBTTR()

# data
dm = CROHMEDatamodule(test_year=test_year)

# train
trainer = Trainer()
trainer.fit(model, datamodule=dm)

# test using the best model!
trainer.test(datamodule=dm)

Note

Metrics used in validation is not accurate.

For more accurate metrics:

  1. use test.py to generate result.zip
  2. download and install crohmelib, lgeval, and tex2symlg tool.
  3. convert tex file to symLg file using tex2symlg command
  4. evaluate two folder using evaluate command

Citation

@article{zhao2021handwritten,
  title={Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer},
  author={Zhao, Wenqi and Gao, Liangcai and Yan, Zuoyu and Peng, Shuai and Du, Lin and Zhang, Ziyin},
  journal={arXiv preprint arXiv:2105.02412},
  year={2021}
}
Comments
  • can you provide predict.py code?

    can you provide predict.py code?

    Hi ~ @Green-Wood.

    I feel grateful mind for your help. I wanna get predict.py code that prints latex from an input image. If this code is provided, it will be very useful to others as well.

    Best regards.

    opened by ai-motive 17
  • val_exprate=0 and save checkpoint

    val_exprate=0 and save checkpoint

    hello!thanks for your time! When I transfer some code in decoder or use it directly,the val_exprate are always be 0.000,I don't know why. Another problem is,I noticed that this code don't have the function to save checkpoint or something.Can you give me some help?Thanks again!

    opened by Ashleyyyi 6
  • Val_exprate = 0

    Val_exprate = 0

    When I retrained the model according to the instruction, the val_exprate was always 0.00, did anyone encounter this problem, thank you! (I has not modified any codes) @Green-Wood

    opened by qingqianshuying 4
  • test.py error occurs

    test.py error occurs

    When I run test.py code, the following error occurs. Can i get some helps?

    in test.py code test_year = "2016" ckp_path = "pretrained model"

    GPU available: True, used: True
    TPU available: False, using: 0 TPU cores
    Load data from: /home/motive/PycharmProjects/BTTR/bttr/datamodule/../../data.zip
    Extract data from: 2016, with data size: 1147
    total  1147 batch data loaded
    LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
    Testing: 100%|██████████| 1147/1147 [07:34<00:00,  2.01s/it]ExpRate: 0.32258063554763794
    length of total file: 1147
    Testing: 100%|██████████| 1147/1147 [07:34<00:00,  2.52it/s]
    --------------------------------------------------------------------------------
    DATALOADER:0 TEST RESULTS
    {}
    --------------------------------------------------------------------------------
    Traceback (most recent call last):
      File "/home/motive/PycharmProjects/BTTR/test.py", line 17, in <module>
        trainer.test(model, datamodule=dm)
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 579, in test
        results = self._run(model)
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 759, in _run
        self.post_dispatch()
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 789, in post_dispatch
        self.accelerator.teardown()
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/accelerators/gpu.py", line 51, in teardown
        self.lightning_module.cpu()
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/utilities/device_dtype_mixin.py", line 141, in cpu
        return super().cpu()
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torch/nn/modules/module.py", line 471, in cpu
        return self._apply(lambda t: t.cpu())
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torch/nn/modules/module.py", line 359, in _apply
        module._apply(fn)
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torchmetrics/metric.py", line 317, in _apply
        setattr(this, key, [fn(cur_v) for cur_v in current_val])
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torchmetrics/metric.py", line 317, in <listcomp>
        setattr(this, key, [fn(cur_v) for cur_v in current_val])
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torch/nn/modules/module.py", line 471, in <lambda>
        return self._apply(lambda t: t.cpu())
    AttributeError: 'tuple' object has no attribute 'cpu'
    
    opened by ai-motive 3
  • How long does BTTR take to train?

    How long does BTTR take to train?

    Hi, thank you for great repository!

    How long does it take to train for your experiment in the paper? I mean training on CROHME 2014/2016/2019 on four NVIDIA 1080Ti GPUs.

    Thanks,

    opened by RyosukeFukatani 2
  • can you provide transfer learning code?

    can you provide transfer learning code?

    Hi~ @Green-Wood

    I wanna apply trasnfer learning using pretrained model.

    but, LightningCLI() is wrapped and difficult to customize.

    Thanks & best regards.

    opened by ai-motive 1
  • How can it get pretrained model ?

    How can it get pretrained model ?

    Hi, I wanna test your BTTR model but, it need to training process which will take a lot of time. So, can you give me a pretrained model link?

    Best regards.

    opened by ai-motive 1
  • After adding new token in dictionary getting error .

    After adding new token in dictionary getting error .

    Hi , getting error after adding new token in dictionary.txt

    Error(s) in loading state_dict for LitBTTR: size mismatch for bttr.decoder.word_embed.0.weight: copying a param with shape torch.Size([113, 256]) from checkpoint, the shape in current model is torch.Size([115, 256]). size mismatch for bttr.decoder.proj.weight: copying a param with shape torch.Size([113, 256]) from checkpoint, the shape in current model is torch.Size([115, 256]). size mismatch for bttr.decoder.proj.bias: copying a param with shape torch.Size([113]) from checkpoint, the shape in current model is torch.Size([115]).

    Kindly help me out how can i fix this error.

    opened by shivankaraditi 0
  • About dataset

    About dataset

    Could you tell me how to generate the offline math expression image from inkml file? My experiment show that a large scale image could improve the result obviously,so I'd like to know if there is unified offline data for academic research.

    opened by lightflash7 0
  • predicting on gpu is slower

    predicting on gpu is slower

    Hi ,

    As this model is a bit slower compared to the existing state-of-the-art model on CPU. So I tried to make predictions on GPU and surprisingly it slower on Gpu compare to CPU as well.

    I am attaching a code snapshot here

    device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')

    model = LitBTTR.load_from_checkpoint('pretrained-2014.ckpt',map_location=device)

    img = Image.open(img_path) img = ToTensor()(img) img.to(device)

    t1 = time.time() hyp = model.beam_search(img) t2 = time.time()

    Kindly help me out here how i can reduce prediction time

    FYI - using GPU on aws g4dn.xlarge configuration machine

    opened by Suma3 1
  • how to use TensorBoard?

    how to use TensorBoard?

    hello i don't know how to add scalar to TensorBoard? I want to do this kind of topic, hoping to improve some ExpRate, but I don’t know much about lightning TensorBoard.

    opened by win5923 9
Releases(v2.0)
Owner
Wenqi Zhao
Student in Nanjing University
Wenqi Zhao
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022