Domain Generalization with MixStyle, ICLR'21.

Overview

MixStyle

This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle".

The OpenReview link is https://openreview.net/forum?id=6xHJ37MVxxp.

########## Updates ############

12-04-2021: A variable self._activated is added to MixStyle to better control the computational flow. To deactivate MixStyle without modifying the model code, one can do

def deactivate_mixstyle(m):
    if type(m) == MixStyle:
        m.set_activation_status(False)

model.apply(deactivate_mixstyle)

Similarly, to activate MixStyle, one can do

def activate_mixstyle(m):
    if type(m) == MixStyle:
        m.set_activation_status(True)

model.apply(activate_mixstyle)

Note that MixStyle has been included in Dassl.pytorch. See the code for details.

05-03-2021: You might also be interested in our recently released survey on domain generalization at https://arxiv.org/abs/2103.02503, which summarizes the ten-year development in domain generalization, with coverage on the history, datasets, related problems, methodologies, potential directions, and so on.

##############################

A brief introduction: The key idea of MixStyle is to probablistically mix instance-level feature statistics of training samples across source domains. MixStyle improves model robustness to domain shift by implicitly synthesizing new domains at the feature level for regularizing the training of convolutional neural networks. This idea is largely inspired by neural style transfer which has shown that feature statistics are closely related to image style and therefore arbitrary image style transfer can be achieved by switching the feature statistics between a content and a style image.

MixStyle is very easy to implement. Below we show the PyTorch code of MixStyle.

import random
import torch
import torch.nn as nn


class MixStyle(nn.Module):
    """MixStyle.

    Reference:
      Zhou et al. Domain Generalization with MixStyle. ICLR 2021.
    """

    def __init__(self, p=0.5, alpha=0.1, eps=1e-6):
        """
        Args:
          p (float): probability of using MixStyle.
          alpha (float): parameter of the Beta distribution.
          eps (float): scaling parameter to avoid numerical issues.
        """
        super().__init__()
        self.p = p
        self.beta = torch.distributions.Beta(alpha, alpha)
        self.eps = eps
        self.alpha = alpha

        self._activated = True

    def __repr__(self):
        return f'MixStyle(p={self.p}, alpha={self.alpha}, eps={self.eps})'

    def set_activation_status(self, status=True):
        self._activated = status

    def forward(self, x):
        if not self.training or not self._activated:
            return x

        if random.random() > self.p:
            return x

        B = x.size(0)

        mu = x.mean(dim=[2, 3], keepdim=True)
        var = x.var(dim=[2, 3], keepdim=True)
        sig = (var + self.eps).sqrt()
        mu, sig = mu.detach(), sig.detach()
        x_normed = (x-mu) / sig

        lmda = self.beta.sample((B, 1, 1, 1))
        lmda = lmda.to(x.device)

        perm = torch.randperm(B)
        mu2, sig2 = mu[perm], sig[perm]
        mu_mix = mu*lmda + mu2 * (1-lmda)
        sig_mix = sig*lmda + sig2 * (1-lmda)

        return x_normed*sig_mix + mu_mix

How to apply MixStyle to your CNN models? Say you are using ResNet as the CNN architecture, and want to apply MixStyle after the 1st and 2nd residual blocks, you can first instantiate the MixStyle module using

self.mixstyle = MixStyle(p=0.5, alpha=0.1)

during network construction (in __init__()), and then apply MixStyle in the forward pass like

def forward(self, x):
    x = self.conv1(x) # 1st convolution layer
    x = self.res1(x) # 1st residual block
    x = self.mixstyle(x)
    x = self.res2(x) # 2nd residual block
    x = self.mixstyle(x)
    x = self.res3(x) # 3rd residual block
    x = self.res4(x) # 4th residual block
    ...

In our paper, we have demonstrated the effectiveness of MixStyle on three tasks: image classification, person re-identification, and reinforcement learning. The source code for reproducing all experiments can be found in mixstyle-release/imcls, mixstyle-release/reid, and mixstyle-release/rl, respectively.

Takeaways on applying MixStyle to your tasks:

  • Applying MixStyle to multiple lower layers is generally better
  • Do not apply MixStyle to the last layer that is the closest to the prediction layer
  • Different tasks might favor different combinations

For more analytical studies, please read our paper at https://openreview.net/forum?id=6xHJ37MVxxp.

To cite MixStyle in your publications, please use the following bibtex entry

@inproceedings{zhou2021mixstyle,
  title={Domain Generalization with MixStyle},
  author={Zhou, Kaiyang and Yang, Yongxin and Qiao, Yu and Xiang, Tao},
  booktitle={ICLR},
  year={2021}
}
Owner
Kaiyang
Researcher in computer vision and machine learning :)
Kaiyang
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021