Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

Related tags

Deep LearningPV-RAFT
Overview

PV-RAFT

This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds" (CVPR 2021)[arXiv]

Installation

Prerequisites

  • Python 3.8
  • PyTorch 1.8
  • torch-scatter
  • CUDA 10.2
  • RTX 2080 Ti
  • tqdm, tensorboard, scipy, imageio, png
conda create -n pvraft python=3.8
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
conda install tqdm tensorboard scipy imageio
pip install pypng
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html

Usage

Data Preparation

We follow HPLFlowNet to prepare FlyingThings3D and KITTI datasets. Please refer to repo. Make sure the project structure look like this:

RAFT_SceneFlow/
    data/
        FlyingThings3D_subset_processed_35m/
        kitti_processed/
    data_preprocess/
    datasets/
    experiments/
    model/
    modules/
    tools/

After downloading datasets, we need to preprocess them.

FlyingThings3D Dataset

python process_flyingthings3d_subset.py --raw_data_path=path_src/FlyingThings3D_subset --save_path=path_dst/FlyingThings3D_subset_processed_35m --only_save_near_pts

You should replace raw_data_path and save_path with your own setting.

KITTI Dataset

python process_kitti.py --raw_data_path=path_src/kitti --save_path=path_dst/kitti_processed --calib_path=calib_folder_path

You should replace raw_data_path, save_path and calib_path with your own setting.

Train

python train.py --exp_path=pv_raft --batch_size=2 --gpus=0,1 --num_epochs=20 --max_points=8192 --iters=8  --root=./

where exp_path is the experiment folder name and root is the project root path. These 20 epochs take about 53 hours on two RTX 2080 Ti.

If you want to train the refine model, please add --refine and specify --weights parameter as the directory name of the pre-trained model. For example,

python train.py --refine --exp_path=pv_raft_finetune --batch_size=2 --gpus=0,1 --num_epochs=10 --max_points=8192 --iters=32 --root=./ --weights=./experiments/pv_raft/checkpoints/best_checkpoint.params

These 10 epochs take about 38 hours on two RTX 2080 Ti.

Test

python test.py --dataset=KITTI --exp_path=pv_raft --gpus=1 --max_points=8192 --iters=8 --root=./ --weights=./experiments/pv_raft/checkpoints/best_checkpoint.params

where dataset should be chosen from FT3D/KITTI, and weights is the absolute path of checkpoint file.

If you want to test the refine model, please add --refine. For example,

python test.py --refine --dataset=KITTI --exp_path=pv_raft_finetune --gpus=1 --max_points=8192 --iters=32 --root=./ --weights=./experiments/pv_raft_finetune/checkpoints/best_checkpoint.params

Reproduce results

You can download the checkpoint of refined model here.

Acknowledgement

Our code is based on FLOT. We also refer to RAFT and HPLFlowNet.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{wei2020pv,
  title={{PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds}},
  author={Wei, Yi and Wang, Ziyi and Rao, Yongming and Lu, Jiwen and Zhou, Jie},
  booktitle={CVPR},
  year={2021}
}
Owner
Yi Wei
Yi Wei
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022