Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

Overview

AutomaticUSnavigation

Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation. We will start by investigating navigation in the XCAT phantom volumes, then integrate our cycleGAN model to the pipeline to perform navigation in US domain. We also test navigation on clinical CT scans.

example of agents navigating in a test XCAT phantom volume (not seen at train time)

The agent is in control of moving 3 points in a 3D volume, which will sample the corresponding plane. We aim to model the agent to learn to move towards 4-chamber views. We define such views as the plane passing through the centroids of the Left Ventricle, Right Ventricle and Right Atrium (XCAT volumes come with semantic segmentations). We reward the agent when it moves towards this goal plane, and when the number of pixels of tissues of interest present in the current plane increase (see rewards/rewards.py fro more details). Furthermore, we add some good-behaviour inducing reards: we maximize the area of the triangle spanned by the agents and we penalize the agents for moving outside of the volumes boundaries. The former encourages smooth transitions (if the agents are clustered close together we would get abrupt transitions) the latter makes sure that the agents stay within the boundaries of the environment. The following animation shows agents navigating towards a 4-Chamber view on a test XCAT volume, agents are initialized randomly within the volume.

trained agent acting greedily.
Fig 1: Our best agent acting greedily for 250 steps after random initialization. Our full agent consists of 3 sub-agents, each controlling the movement of 1 point in a 3D space. As each agent moves around the 3 points will sample a particular view of the CT volume.

example of agents navigating in clinical CTs

We than upgrade our pipeline generating realistic fake CT volumes using Neural Style Transfer on our XCAT volumes. We will generate volumes which aim to resemble CT texture while retaining XCAT content. We train the agents in the same manner on this new simulated environment and we test practicality both on unseen fake CT volumes and on clinical volumes from LIDC-IDRI dataset.

trained agent acting greedily on fake CT. trained agent acting greedily on real CT.
Fig 2: Left) Our best agent acting greedily on a test fake CT volume for 125 steps after random initialization. Right) same agents tested on clinical CT data.

example of agents navigating on synthetic US

We couple our navigation framework with a CycleGAN that transforms XCAT slices into US images on the fly. Our CycleGAN model is not perfect yet and we are limited to contrain the agent within +/- 20 pixels from the goal plane. Note that we invert intensities of the XCAT images to facilitate the translation process.

trained agent acting greedily on US environment.
Fig 1: Our best agent acting greedily for 50 steps after initialization within +/- 20 pixels from the goal plane. The XCAT volume is used a proxy for navigation in US domain.

usage

  1. clone the repo and install dependencies
git clone [email protected]:CesareMagnetti/AutomaticUSnavigation.git
cd AutomaticUSnavigation
python3 -m venv env
source env/bin/activate
pip install -r requirements
  1. if you don't want to integrate the script with weights and biases run scripts with the additional --wandb disabled flag.

  2. train our best agents on 15 XCAT volumes (you must generate these yourself). It will save results to ./results/ and checkpoints to ./checkpoints/. Then test the agent 100 times on all available volumes (in our case 20) and generate some test trajectories to visualize results.

python train.py --name 15Volume_both_terminateOscillate_Recurrent --dataroot [path/to/XCAT/volumes] --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14 --anatomyRewardWeight 1 --planeDistanceRewardWeight 1 --incrementalAnatomyReward --termination oscillate --exploring_steps 0 --recurrent --batch_size 8 --update_every 15

python test.py --name 15Volume_both_terminateOscillate_Recurrent --dataroot [path/to/XCAT/volumes] --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14,
samp15,samp16,samp17,samp18,samp19 --n_runs 2000 --load latest --fname quantitative_metrics

python test_trajectory.py --name 15Volume_both_terminateOscillate_Recurrent --dataroot [path/to/XCAT/volumes] --volume_ids samp15,samp16,samp17,samp18,samp19 --n_steps 250 --load latest
  1. train our best agent on the fake CT volumes (we can then test on real CT data).
python make_XCAT_volumes_realistic.py --dataroot [path/to/XCAT/volumes] --saveroot [path/to/save/fakeCT/volumes] --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14,
samp15,samp16,samp17,samp18,samp19 --style_imgs [path/to/style/realCT/images] --window 3

python train.py --name 15Volume_CT_both_terminateOscillate_Recurrent_smoothedVolumes_lessSteps --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14 --anatomyRewardWeight 1 --planeDistanceRewardWeight 1 --incrementalAnatomyReward --termination oscillate --exploring_steps 0 --recurrent --batch_size 8 --update_every 15 --dataroot [path/to/fakeCT/volumes] --load_size 128 --no_preprocess --n_steps_per_episode 125 --buffer_size 25000 --randomize_intensities

python test_trajectory.py --name 15Volume_CT_both_terminateOscillate_Recurrent_smoothedVolumes_lessSteps --dataroot [path-to/realCT/volumes] --volume_ids 128_LIDC-IDRI-0101,128_LIDC-IDRI-0102 --load latest --n_steps 125 --no_preprocess --realCT
  1. train our best agent on fake US environment
python train.py --name 15Volumes_easyObjective20_CT2USbestModel_bestRL --easy_objective --n_steps_per_episode 50 --buffer_size 10000 --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14 --dataroot [path/to/XCAT/volumes(must rotate)] --anatomyRewardWeight 1 --planeDistanceRewardWeight 1 --incrementalAnatomyReward --termination oscillate --exploring_steps 0 --batch_size 8 --update_every 12 --recurrent --CT2US --ct2us_model_name bestCT2US

python test_trajectory.py --name 15Volumes_easyObjective20_CT2USbestModel_bestRL --dataroot [path/to/XCAT/volumes(must rotate)] --volume_ids samp15,samp16,samp17,samp18,samp19 --easy_objective --n_steps 50 --CT2US --ct2us_model_name bestCT2US --load latest

Acknowledgements

Work done with the help of Hadrien Reynaud. Our CT2US models are built upon the CT2US simulation repo, which itself is heavily based on CycleGAN-and-pix2pix and CUT repos.

Owner
Cesare Magnetti
Cesare Magnetti
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022