NeuralDiff: Segmenting 3D objects that move in egocentric videos

Overview

NeuralDiff: Segmenting 3D objects that move in egocentric videos

Project Page | Paper + Supplementary | Video

teaser

About

This repository contains the official implementation of the paper NeuralDiff: Segmenting 3D objects that move in egocentric videos by Vadim Tschernezki, Diane Larlus and Andrea Vedaldi. Published at 3DV21.

Given a raw video sequence taken from a freely-moving camera, we study the problem of decomposing the observed 3D scene into a static background and a dynamic foreground containing the objects that move in the video sequence. This task is reminiscent of the classic background subtraction problem, but is significantly harder because all parts of the scene, static and dynamic, generate a large apparent motion due to the camera large viewpoint change. In particular, we consider egocentric videos and further separate the dynamic component into objects and the actor that observes and moves them. We achieve this factorization by reconstructing the video via a triple-stream neural rendering network that explains the different motions based on corresponding inductive biases. We demonstrate that our method can successfully separate the different types of motion, outperforming recent neural rendering baselines at this task, and can accurately segment moving objects. We do so by assessing the method empirically on challenging videos from the EPIC-KITCHENS dataset which we augment with appropriate annotations to create a new benchmark for the task of dynamic object segmentation on unconstrained video sequences, for complex 3D environments.

Installation

We provide an environment config file for anaconda. You can install and activate it with the following commands:

conda env create -f environment.yaml
conda activate neuraldiff

Dataset

The EPIC-Diff dataset can be downloaded here.

After downloading, move the compressed dataset to the directory of the cloned repository (e.g. NeuralDiff). Then, apply following commands:

mkdir data
mv EPIC-Diff.tar.gz data
cd data
tar -xzvf EPIC-Diff.tar.gz

The RGB frames are hosted separately as a subset from the EPIC-Kitchens dataset. The data are available at the University of Bristol data repository, data.bris. Once downloaded, move the folders into the same directory as mentioned before (data/EPIC-Diff).

Pretrained models

We are providing model checkpoints for all 10 scenes. You can use these to

  • evaluate the models with the annotations from the EPIC-Diff benchmark
  • create a summary video like at the top of this README to visualise the separation of the video into background, foreground and actor

The models can be downloaded here (about 50MB in total).

Once downloaded, place ckpts.tar.gz into the main directory. Then execute tar -xzvf ckpts.tar.gz. This will create a folder ckpts with the pretrained models.

Reproducing results

Visualisations and metrics per scene

To evaluate the scene with Video ID P01_01, use the following command:

sh scripts/eval.sh rel P01_01 rel 'masks' 0 0

The results are saved in results/rel. The subfolders contain a txt file containing the mAP and PSNR scores per scene and visualisations per sample.

You can find all scene IDs in the EPIC-Diff data folder (e.g. P01_01, P03_04, ... P21_01).

Average metrics over all scenes

You can calculate the average of the metrics over all scenes (Table 1 in the paper) with the following command:

sh scripts/eval.sh rel 0 0 'average' 0 0

Make sure that you have calculated the metrics per scene before proceeding with that (this command simply reads the produced metrics per scene and averages them).

Rendering a video with separation of background, foreground and actor

To visualise the different model components of a reconstructed video (as seen on top of this page) from

  1. the ground truth camera poses corresponding to the time of the video
  2. and a fixed viewpoint, use the following command:
sh scripts/eval.sh rel P01_01 rel 'summary' 0 0

This will result in a corresponding video in the folder results/rel/P01_01/summary.

The fixed viewpoints are pre-defined and correspond to the ones that we used in the videos provided in the supplementary material. You can adjust the viewpoints in __init__.py of dataset.

Training

We provide scripts for the proposed model (including colour normalisation). To train a model for scene P01_01, use the following command.

sh scripts/train.sh P01_01

You can visualise the training with tensorboard. The logs are stored in logs.

Citation

If you found our code or paper useful, then please cite our work as follows.

@inproceedings{tschernezki21neuraldiff,
  author     = {Vadim Tschernezki and Diane Larlus and
                Andrea Vedaldi},
  booktitle  = {Proceedings of the International Conference
                on {3D} Vision (3DV)},
  title      = {{NeuralDiff}: Segmenting {3D} objects that
                move in egocentric videos},
  year       = {2021}
}

Acknowledgements

This implementation is based on this (official NeRF) and this repository (unofficial NeRF-W).

Our dataset is based on a sub-set of frames from EPIC-Kitchens. COLMAP was used for computing 3D information for these frames and VGG Image Annotator (VIA) was used for annotating them.

Owner
Vadim Tschernezki
Vadim Tschernezki
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022