ICCV2021 Expert-Goal Trajectory Prediction

Overview

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples

This repository contains the code for the paper Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples. Accepted to ICCV 2021

Abstract: Goal-conditioned approaches recently have been found very useful to human trajectory prediction, when adequate goal estimates are provided. Yet, goal inference is difficult in itself and often incurs extra learning effort. We propose to predict pedestrian trajectories via the guidance of goal expertise, which can be obtained with modest expense through a novel goal-search mechanism on already seen training examples. There are three key contributions in our study. First, we devise a framework that exploits nearest examples for high-quality goal position inquiry. This approach naturally considers multi-modality, physical constraints, compatibility with existing methods and is nonparametric; it therefore does not require additional learning effort typical in goal inference. Second, we present an end-to-end trajectory predictor that can efficiently associate goal retrievals to past motion information and dynamically infer possible future trajectories. Third, with these two novel techniques in hand, we conduct a series of experiments on two broadly explored datasets (SDD and ETH/UCY) and show that our approach surpasses previous state-of-the-art performance by notable margins and reduces the need for additional parameters

Model

Result

SDD ADE FDE
Eval-Opt1 (Reported in Paper) 7.69 14.38
Eval-Opt2 7.51 13.21

Running Pre-trained Models

You can run the command for SDD:

python test_sdd.py

You can run the command for ETH/UCY:

python test_ethucy.py

To switch subsets among the ETH/UCY, change the dataset_name variable in test_ethucy.py file (e.g., eth/zara1/zara2/hotel/univ)

Citation

If you find this code useful in your work then please cite

@inproceedings{he2021where,
  title={Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples},
  author={He, Zhao and Richard P. Wildes},
  booktitle = {Proceedings of the International Conference on Computer Vision (ICCV)},
  month = {Oct.},
  year={2021}
}

Acknowledgement

The dataset processing is largely from PECNET and Social-STGCNN. Many thanks to them.

Contact

Please contact He Zhao @ [email protected] if any issue.

Owner
hz
Currently graduate student in York University, Canada, majoring in Computer Vision, EECS;
hz
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022