This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Overview

Deep learning for Earth Observation

http://www.onera.fr/en/dtim https://www-obelix.irisa.fr/

This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning.

We build on the SegNet architecture (Badrinarayanan et al., 2015) to provide a semantic labeling network able to perform dense prediction on remote sensing data. The implementation uses the PyTorch framework.

Motivation

Earth Observation consists in visualizing and understanding our planet thanks to airborne and satellite data. Thanks to the release of large amounts of both satellite (e.g. Sentinel and Landsat) and airborne images, Earth Observation entered into the Big Data era. Many applications could benefit from automatic analysis of those datasets : cartography, urban planning, traffic analysis, biomass estimation and so on. Therefore, lots of progresses have been made to use machine learning to help us have a better understanding of our Earth Observation data.

In this work, we show that deep learning allows a computer to parse and classify objects in an image and can be used for automatical cartography from remote sensing data. Especially, we provide examples of deep fully convolutional networks that can be trained for semantic labeling for airborne pictures of urban areas.

Content

Deep networks

We provide a deep neural network based on the SegNet architecture for semantic labeling of Earth Observation images.

All the pre-trained weights can be found on the OBELIX team website (backup link.

Data

Our example models are trained on the ISPRS Vaihingen dataset and ISPRS Potsdam dataset. We use the IRRG tiles (8bit format) and we build 8bit composite images using the DSM, NDSM and NDVI.

You can either use our script from the OSM folder (based on the Maperitive software) to generate OpenStreetMap rasters from the images, or download the OSM tiles from Potsdam here.

The nDSM for the Vaihingen dataset is available here (courtesy of Markus Gerke, see also his webpage). The nDSM for the Potsdam dataset is available here.

How to start

Just run the SegNet_PyTorch_v2.ipynb notebook using Jupyter!

Requirements

Find the right version for your setup and install PyTorch.

Then, you can use pip or any package manager to install the packages listed in requirements.txt, e.g. by using:

pip install -r requirements.txt

References

If you use this work for your projects, please take the time to cite our ISPRS Journal paper :

https://arxiv.org/abs/1711.08681 Nicolas Audebert, Bertrand Le Saux and Sébastien Lefèvre, Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks, ISPRS Journal of Photogrammetry and Remote Sensing, 2017.

@article{audebert_beyond_2017,
title = "Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks",
journal = "ISPRS Journal of Photogrammetry and Remote Sensing",
year = "2017",
issn = "0924-2716",
doi = "https://doi.org/10.1016/j.isprsjprs.2017.11.011",
author = "Nicolas Audebert and Bertrand Le Saux and Sébastien Lefèvre",
keywords = "Deep learning, Remote sensing, Semantic mapping, Data fusion"
}

License

Code (scripts and Jupyter notebooks) are released under the GPLv3 license for non-commercial and research purposes only. For commercial purposes, please contact the authors.

https://creativecommons.org/licenses/by-nc-sa/3.0/ The network weights are released under Creative-Commons BY-NC-SA. For commercial purposes, please contact the authors.

See LICENSE.md for more details.

Acknowledgements

This work has been conducted at ONERA (DTIM) and IRISA (OBELIX team), with the support of the joint Total-ONERA research project NAOMI.

The Vaihingen data set was provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).

Say Thanks!

Owner
Nicolas Audebert
Assistant professor in Computer Science. Resarcher on computer vision and deep learning.
Nicolas Audebert
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022