This is an official source code for implementation on Extensive Deep Temporal Point Process

Related tags

Deep LearningEDTPP
Overview

Extensive Deep Temporal Point Process

This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed of the following three parts:

1. REVIEW on methods on deep temporal point process

2. PROPOSITION of a framework on Granger causality discovery

3. FAIR empirical study

Reviews

We first conclude the recent research topics on deep temporal point process as four parts:

· Encoding of history sequence

· Relational discovery of events

· Formulation of conditional intensity function

· Learning approaches for optimization

By dismantling representative methods into the four parts, we list their contributions on temporal point process.

Methods with the same learning approaches:

Methods History Encoder Intensity Function Relational Discovery Learning Approaches Released codes
RMTPP RNN Gompertz / MLE with SGD https://github.com/musically-ut/tf_rmtpp
ERTPP LSTM Gaussian / MLE with SGD https://github.com/xiaoshuai09/Recurrent-Point-Process
CTLSTM CTLSTM Exp-decay + softplus / MLE with SGD https://github.com/HMEIatJHU/neurawkes
FNNPP LSTM FNNIntegral / MLE with SGD https://github.com/omitakahiro/NeuralNetworkPointProcess
LogNormMix LSTM Log-norm Mixture / MLE with SGD https://github.com/shchur/ifl-tpp
SAHP Transformer Exp-decay + softplus Attention Matrix MLE with SGD https://github.com/QiangAIResearcher/sahp_repo
THP Transformer Linear + softplus Structure learning MLE with SGD https://github.com/SimiaoZuo/Transformer-Hawkes-Process
DGNPP Transformer Exp-decay + softplus Bilevel Structure learning MLE with SGD No available codes until now.

Methods focusing on learning approaches:

Expansions:

Granger causality framework

The workflows of the proposed granger causality framework:

Experiments shows improvements in fitting and predictive ability in type-wise intensity modeling settings. And the Granger causality graph can be obtained:

Learned Granger causality graph on Stack Overflow

Fair empirical study

The results is showed in the Section 6.3. Here we give an instruction on implementation.

Installation

Requiring packages:

pytorch=1.8.0=py3.8_cuda11.1_cudnn8.0.5_0
torchvision=0.9.0=py38_cu111
torch-scatter==2.0.8

Dataset

We provide the MOOC and Stack Overflow datasets in ./data/

And Retweet dataset can be downloaded from Google Drive. Download it and copy it into ./data/retweet/

To preprocess the data, run the following commands

python /scripts/generate_mooc_data.py
python /scripts/generate_stackoverflow_data.py
python /scripts/generate_retweet_data.py

Training

You can train the model with the following commands:

python main.py --config_path ./experiments/mooc/config.yaml
python main.py --config_path ./experiments/stackoverflow/config.yaml
python main.py --config_path ./experiments/retweet/config.yaml

The .yaml files consist following kwargs:

log_level: INFO

data:
  batch_size: The batch size for training
  dataset_dir: The processed dataset directory
  val_batch_size: The batch size for validation and test
  event_type_num: Number of the event types in the dataset. {'MOOC': 97, "Stack OverFlow": 22, "Retweet": 3}

model:
  encoder_type: Used history encoder, chosen in [FNet, RNN, LSTM, GRU, Attention]
  intensity_type: Used intensity function, chosen in [LogNormMix, GomptMix, LogCauMix, ExpDecayMix, WeibMix, GaussianMix] and 
        [LogNormMixSingle, GomptMixSingle, LogCauMixSingle, ExpDecayMixSingle, WeibMixSingle, GaussianMixSingle, FNNIntegralSingle],
        where *Single means modeling the overall intensities
  time_embed_type: Time embedding, chosen in [Linear, Trigono]
  embed_dim: Embeded dimension
  lag_step: Predefined lag step, which is only used when intra_encoding is true
  atten_heads: Attention heads, only used in Attention encoder, must be a divisor of embed_dim.
  layer_num: The layers number in the encoder and history encoder
  dropout: Dropout ratio, must be in 0.0-1.0
  gumbel_tau: Initial temperature in Gumbel-max
  l1_lambda: Weight to control the sparsity of Granger causality graph
  use_prior_graph: Only be true when the ganger graph is given, chosen in [true, false]
  intra_encoding: Whether to use intra-type encoding,  chosen in [true, false]

train:
  epochs: Training epoches
  lr: Initial learning rate
  log_dir: Diretory for logger
  lr_decay_ratio: The decay ratio of learning rate
  max_grad_norm: Max gradient norm
  min_learning_rate: Min learning rate
  optimizer: The optimizer to use, chosen in [adam]
  patience: Epoch for early stopping 
  steps: Epoch numbers for learning rate decay. 
  test_every_n_epochs: 10
  experiment_name: 'stackoverflow'
  delayed_grad_epoch: 10
  relation_inference: Whether to use graph discovery, chosen in [true, false],
        if false, but intra_encoding is true, the graph will be complete.
  
gpu: The GPU number to use for training

seed: Random Seed
Owner
Haitao Lin
Haitao Lin
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023