Performant, differentiable reinforcement learning

Related tags

Deep Learningdeluca
Overview

deluca

Performant, differentiable reinforcement learning

Notes

  1. This is pre-alpha software and is undergoing a number of core changes. Updates to follow.
  2. Please see the examples for guidance on how to use deluca

pypi pyversions security: bandit Code style: black License: Apache 2.0

build coverage Documentation Status doc_coverage

deluca

Comments
  • Exception error during installing deluca

    Exception error during installing deluca

    Hi.

    I am trying to install deluca and I get an Exception error. I am using

    Ubuntu 64 on a virtual machine Pycharm CE 2021.2, Python 3.8 pip 212.1.2

    I tried to install deluca with the package manager in Pycharm, the terminal in Pycharm and also the Ubuntu terminal. The error is the same. Note that I can install other normal packages like Numpy, Scipy, etc with no problem. Thanks in advance and I am looking forward to using this amazing package!

    pip install deluca
    Collecting deluca
       Using cached deluca-0.0.17-py3-none-any.whl (52 kB)
    Collecting flax
       Using cached flax-0.3.4-py3-none-any.whl (183 kB)
    Collecting brax
       Using cached brax-0.0.4-py3-none-any.whl (117 kB)
    Processing
    ./.cache/pip/wheels/78/ae/07/bd3adac873fa80efc909c09331831905ac657dbb8d1278235e/jax-0.2.19-py3-none-any.whl
    Collecting optax
       Using cached optax-0.0.9-py3-none-any.whl (118 kB)
    Collecting scipy
       Using cached
    scipy-1.7.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (28.4 MB)
    Collecting numpy
       Using cached
    numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
    (15.8 MB)
    Collecting matplotlib
       Using cached matplotlib-3.4.3-cp38-cp38-manylinux1_x86_64.whl (10.3 MB)
    Collecting msgpack
       Using cached msgpack-1.0.2-cp38-cp38-manylinux1_x86_64.whl (302 kB)
    Collecting grpcio
       Using cached grpcio-1.39.0-cp38-cp38-manylinux2014_x86_64.whl (4.3 MB)
    Collecting clu
       Using cached clu-0.0.6-py3-none-any.whl (77 kB)
    Collecting gym
       Using cached gym-0.19.0.tar.gz (1.6 MB)
    Collecting absl-py
       Using cached absl_py-0.13.0-py3-none-any.whl (132 kB)
    Collecting tfp-nightly[jax]<=0.13.0.dev20210422
       Using cached tfp_nightly-0.13.0.dev20210422-py2.py3-none-any.whl (5.3 MB)
    Collecting jaxlib
       Using cached jaxlib-0.1.70-cp38-none-manylinux2010_x86_64.whl (46.9 MB)
    Collecting dataclasses
       Using cached dataclasses-0.6-py3-none-any.whl (14 kB)
    Collecting opt-einsum
       Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
    Collecting chex>=0.0.4
       Using cached chex-0.0.8-py3-none-any.whl (57 kB)
    Requirement already satisfied: pillow>=6.2.0 in
    /usr/lib/python3/dist-packages (from matplotlib->flax->deluca) (7.0.0)
    Collecting cycler>=0.10
       Using cached cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
    Collecting pyparsing>=2.2.1
       Using cached pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
    Collecting kiwisolver>=1.0.1
       Using cached kiwisolver-1.3.1-cp38-cp38-manylinux1_x86_64.whl (1.2 MB)
    Requirement already satisfied: python-dateutil>=2.7 in
    /usr/lib/python3/dist-packages (from matplotlib->flax->deluca) (2.7.3)
    Requirement already satisfied: six>=1.5.2 in
    /usr/lib/python3/dist-packages (from grpcio->brax->deluca) (1.14.0)
    Collecting tensorflow-datasets
       Using cached tensorflow_datasets-4.4.0-py3-none-any.whl (4.0 MB)
    Collecting packaging
       Using cached packaging-21.0-py3-none-any.whl (40 kB)
    Collecting ml-collections
       Using cached ml_collections-0.1.0-py3-none-any.whl (88 kB)
    Collecting tensorflow
       Downloading tensorflow-2.6.0-cp38-cp38-manylinux2010_x86_64.whl
    (458.4 MB)
          |▋                               | 8.4 MB 16 kB/s eta
    7:44:54ERROR: Exception:
    Traceback (most recent call last):
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 425, in _error_catcher
         yield
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 507, in read
         data = self._fp.read(amt) if not fp_closed else b""
       File
    "/usr/share/python-wheels/CacheControl-0.12.6-py2.py3-none-any.whl/cachecontrol/filewrapper.py",
    line 62, in read
         data = self.__fp.read(amt)
       File "/usr/lib/python3.8/http/client.py", line 455, in read
         n = self.readinto(b)
       File "/usr/lib/python3.8/http/client.py", line 499, in readinto
         n = self.fp.readinto(b)
       File "/usr/lib/python3.8/socket.py", line 669, in readinto
         return self._sock.recv_into(b)
       File "/usr/lib/python3.8/ssl.py", line 1241, in recv_into
         return self.read(nbytes, buffer)
       File "/usr/lib/python3.8/ssl.py", line 1099, in read
         return self._sslobj.read(len, buffer)
    socket.timeout: The read operation timed out
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
       File
    "/usr/lib/python3/dist-packages/pip/_internal/cli/base_command.py", line
    186, in _main
         status = self.run(options, args)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/commands/install.py", line
    357, in run
         resolver.resolve(requirement_set)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    177, in resolve
         discovered_reqs.extend(self._resolve_one(requirement_set, req))
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    333, in _resolve_one
         abstract_dist = self._get_abstract_dist_for(req_to_install)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    282, in _get_abstract_dist_for
         abstract_dist = self.preparer.prepare_linked_requirement(req)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 480, in prepare_linked_requirement
         local_path = unpack_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 282, in unpack_url
         return unpack_http_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 158, in unpack_http_url
         from_path, content_type = _download_http_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 303, in _download_http_url
         for chunk in download.chunks:
       File "/usr/lib/python3/dist-packages/pip/_internal/utils/ui.py", line
    160, in iter
         for x in it:
       File "/usr/lib/python3/dist-packages/pip/_internal/network/utils.py",
    line 15, in response_chunks
         for chunk in response.raw.stream(
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 564, in stream
         data = self.read(amt=amt, decode_content=decode_content)
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 529, in read
         raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
       File "/usr/lib/python3.8/contextlib.py", line 131, in __exit__
         self.gen.throw(type, value, traceback)
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 430, in _error_catcher
         raise ReadTimeoutError(self._pool, None, "Read timed out.")
    urllib3.exceptions.ReadTimeoutError:
    HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed
    out.
    
    opened by FarnazAdib 4
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    cla: yes 
    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    cla: yes 
    opened by copybara-service[bot] 0
  • Consider dependency on OpenAI Gym

    Consider dependency on OpenAI Gym

    • Not clear what the benefits of compatibility are since existing agents that work on OpenAI Gym environments have no guarantee of working on deluca environments
    • OpenAI Gym bundles environment with initialization and task. Not necessarily something we want to do.
    opened by danielsuo 0
  • Changes to _adaptive.py

    Changes to _adaptive.py

    Hello! I made some modifications to AdaGPC (in _adaptive.py). In the existing implementation, GPC outperforms AdaGPC in the known LDS setting, which is the opposite of what one should expect. Based on some preliminary experiments, I believe AdaGPC is now working properly (at least in the known dynamics version). (I also made some miscellaneous changes in other files, e.g., to the imports in some of the agent files -- I think there might have been some file restructuring across different versions of deluca, but the imports were not updated to reflect this change, causing some errors at runtime.) Please let me know if you have any questions/concerns. Thanks!

    opened by simran135 1
  • [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    The closest public approximation to type(jnp.float32) is type[Any]. Nothing is ever actually an instance of one of these types, either (they build DeviceArrays if instantiated.)

    opened by copybara-service[bot] 0
  • [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    The closest public approximation to type(jnp.float32) is type[Any]. Nothing is ever actually an instance of one of these types, either (they build DeviceArrays if instantiated.)

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Implementation of drc

    Implementation of drc

    Hi

    Thanks for providing this interesting package.

    I am trying to test drc on a simple setup and I notice that the current implementation of drc does not work. I mean when I try it for a simple partially observable linear system with A = np.array([[1.0 0.95], [0.0, -0.9]]), B = np.array([[0.0], [1.0]]) C = np.array([[1.0, 0]]) Q , R = I gaussian process noise, zero observation noise which is open loop stable, the controller acts like a zero controller. I tried to get a different response by setting the hyperparameters but they are mostly the same. Then I looked at the implementation at the deluca github and I noticed that the counterfactual cost is not defined correctly (if I am not wrong). According to Algorithm 1 in [1], we need to use M_t to compute y_t (which depends on the previous controls (u) using again M_t) but in the implementation, the previous controls based on M_{t-i} are used. Anyway, I implemented the algorithm using M_t but what I get after the simulation is either close to zero control or an unstable one.

    I was wondering if you have any code example for the DRC algorithm that works? [1] Simchowitz, Max and Singh, Karan and Hazan, Elad, "Improper learning for non-stochastic control", COLT 2020.

    Thanks a lot, Sincerely, Farnaz

    opened by FarnazAdib 4
Releases(v0.0.17)
Owner
Google
Google ❤️ Open Source
Google
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022