The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Overview

Introduction

This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is published in NeurIPS 2021.

Citation

We kindly ask anybody who uses this code to cite the following bibtex:

@inproceedings{
    ma2021finding,
    title={Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks},
    author={Chen Ma and Xiangyu Guo and Li Chen and Jun-Hai Yong and Yisen Wang},
    booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
    year={2021},
    url={https://openreview.net/forum?id=g0wang64Zjd}
}

Structure of Folders and Files

+-- configures
|   |-- HSJA.json  # the hyperparameters setting of HSJA, which is also used in Tangent Attack
+-- dataset
|   |-- dataset_loader_maker.py  # it returns the data loader class that includes 1000 attacks images for the experiments.
|   |-- npz_dataset.py  # it is the dataset class that includes 1000 attacks images for the experiments.
+-- models
|   |-- defensive_model.py # the wrapper of defensive networks (e.g., AT, ComDefend, Feature Scatter), and it converts the input image's pixels to the range of 0 to 1 before feeding.
|   |-- standard_model.py # the wrapper of standard classification networks, and it converts the input image's pixels to the range of 0 to 1 before feeding.
+-- tangent_attack_hemisphere
|   |-- attack.py  # the main class for the attack.
|   |-- tangent_point_analytical_solution.py  # the class for computing the optimal tagent point of the hemisphere.
+-- tangent_attack_semiellipsoid
|   |-- attack.py  # the main class for the attack.
|   |-- tangent_point_analytical_solution.py  # the class for computing the optimal tagent point of the semi-ellipsoid.
+-- cifar_models   # this folder includes the target models of CIFAR-10, i.e., PyramidNet-272, GDAS, WRN-28, and WRN-40 networks.
|-- config.py   # the main configuration of Tangent Attack.
|-- logs  # all the output (logs and result stats files) are located inside this folder
|-- train_pytorch_model  # the pretrained weights of target models
|-- attacked_images  # the 1000 image data for evaluation 

In general, the train_pytorch_model includes the pretrained models' weights, and attacked_images includes the image data, which is packaged into .npz format with pixel range of [0-1].

In the attack, all logs are dumped to logs folder, the statistical results are also written into logs folder, which are .json format.

Attack Command

The following command could run Tangent Attack (TA) and Generalized Tangent Attack (G-TA) on the CIFAR-10 dataset under the untargetd attack's setting:

python tangent_attack_hemisphere/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch resnet-50
python tangent_attack_hemisphere/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch gdas
python tangent_attack_semiellipsoid/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch resnet-50
python tangent_attack_semiellipsoid/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch gdas

Once the attack is running, it directly writes the log into a newly created logs folder. After attacking, the statistical result are also dumped into the same folder, which is named as *.json file.

Also, you can use the following bash shell to run the attack of different models one by one.

./tangent_attack_CIFAR_undefended_models.sh

The commmand of attacks of defense models are presented in tangent_attack_CIFAR_defense_models.sh.

  • The gpu device could be specified by the --gpu device_id argument.
  • the targeted attack can be specified by the --targeted argument. If you want to perform untargeted attack, just don't pass it.
  • the attack of defense models uses --attack_defense --defense_model adv_train/jpeg/com_defend/TRADES argument.

Requirement

Our code is tested on the following environment (probably also works on other environments without many changes):

  • Ubuntu 18.04
  • Python 3.7.3
  • CUDA 11.1
  • CUDNN 8.0.4
  • PyTorch 1.7.1
  • torchvision 0.8.2
  • numpy 1.18.0
  • pretrainedmodels 0.7.4
  • bidict 0.18.0
  • advertorch 0.1.5
  • glog 0.3.1

You can just type pip install -r requirements.txt to install packages.

Download Files of Running Results and Logs

I have uploaded all the logs and results with the compressed zip file format onto this google drive link so that you can download them.

Owner
machen
machen
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022