Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Related tags

Deep LearningISVN
Overview

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB)

Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dezhong Peng, Deep Semisupervised Multiview Learning With Increasing Views[J]. IEEE Transactions on Cybernetics, Online. (PyTorch Code)

Abstract

In this article, we study two challenging problems in semisupervised cross-view learning. On the one hand, most existing methods assume that the samples in all views have a pairwise relationship, that is, it is necessary to capture or establish the correspondence of different views at the sample level. Such an assumption is easily isolated even in the semisupervised setting wherein only a few samples have labels that could be used to establish the correspondence. On the other hand, almost all existing multiview methods, including semisupervised ones, usually train a model using a fixed dataset, which cannot handle the data of increasing views. In practice, the view number will increase when new sensors are deployed. To address the above two challenges, we propose a novel method that employs multiple independent semisupervised view-specific networks (ISVNs) to learn representation for multiple views in a view-decoupling fashion. The advantages of our method are two-fold. Thanks to our specifically designed autoencoder and pseudolabel learning paradigm, our method shows an effective way to utilize both the labeled and unlabeled data while relaxing the data assumption of the pairwise relationship, that is, correspondence. Furthermore, with our view decoupling strategy, the proposed ISVNs could be separately trained, thus efficiently handling the data of increasing views without retraining the entire model. To the best of our knowledge, our ISVN could be one of the first attempts to make handling increasing views in the semisupervised setting possible, as well as an effective solution to the noncorresponding problem. To verify the effectiveness and efficiency of our method, we conduct comprehensive experiments by comparing 13 state-of-the-art approaches on four multiview datasets in terms of retrieval and classification.

Framework

Figure 1. Difference between (a) existing joint multiview learning and (b) our independent multiview learning. In brief, the traditional methods use all views to learn the common space. They are difficult to handle increasing views since their models are optimized depending on all views. Thus, they should retrain the whole model to handle new views, which is inefficient with abandoning the trained model. In contrast, our method independently trains the k view-specific models for the k new views, thus efficiently handling increasing views.


Figure 2. Pipeline of our ISVN for the 𝓲th view. All views could be separately projected into the common space without any interview constraints, and could easily and efficiently handle new views.

Usage

To train a model for image modelity wtih 64 bits on $datasets, just run main_DCHN.py as follows:

python train_ISVN.py --datasets $datasets --epochs $epochs --batch_size $batch_size --view_id $view --output_shape $output_shape --beta $beta --alpha $alpha --threshold $threshold --K $K --gpu_id $gpu_id

where $datasets, $epochs, $batch_size, $view, $output_shape, $beta, $alpha, $threshold, $K, and $gpu_id are the name of dataset, epoch , batch size, view number, objective dimensionality, β, αγ, the number of labeled data, and GPU ID, respectively.

To evaluate the trained models, you could run train_ISVN.py as follows:

python train_ISVN.py --mode eval --datasets $datasets --view -1 --output_shape $output_shape --beta $beta --alpha $alpha --K $K --gpu_id $gpu_id --num_workers 0

Comparison with the State-of-the-Art

Table 1. Performance comparison in terms of mAP scores on the XMediaNet dataset. The highest score is shown in boldface.


Table 2. Performance comparison in terms of mAP scores on the NUS-WIDE dataset. The highest score is shown in boldface.


Table 3. Performance comparison in terms of mAP scores on the INRIA-Websearch dataset. The highest score is shown in boldface.


Table 4. Performance comparison in terms of cross-view top-1 classification on the MNIST-SVHN dataset. The highest score is shown in boldface.


Table 5. Ablation study on different datasets. X denotes training ISVN without X, and X could be autoencoder (AE) and pseudo-label (PL). This table shows the experimental results of cross-view retrieval on XMediaNet and NUS-WIDE, and of cross-view classification on MNIST-SVHN. The highest score is shown in boldface.

Citation

If you find ISVN useful in your research, please consider citing:

@inproceedings{hu2021ISVN,
  author={Hu, Peng and Peng, Xi and Zhu, Hongyuan and Zhen, Liangli and Lin, Jie and Yan, Huaibai and Peng, Dezhong},
  journal={IEEE Transactions on Cybernetics}, 
  title={Deep Semisupervised Multiview Learning With Increasing Views}, 
  year={2021},
  volume={},
  number={},
  pages={1-12},
  doi={10.1109/TCYB.2021.3093626}}
}
Owner
https://penghu-cs.github.io/
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022