EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Overview

Introduction EEGEyeNet

EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty.

Overview

The repository consists of general functionality to run the benchmark and custom implementation of different machine learning models. We offer to run standard ML models (e.g. kNN, SVR, etc.) on the benchmark. The implementation can be found in the StandardML_Models directory.

Additionally, we implemented a variety of deep learning models. These are implemented and can be run in both pytorch and tensorflow.

The benchmark consists of three tasks: LR (left-right), Direction (Angle, Amplitude) and Coordinates (x,y)

Installation (Environment)

There are many dependencies in this benchmark and we propose to use anaconda as package manager.

You can install a full environment to run all models (standard machine learning and deep learning models in both pytorch and tensorflow) from the eegeyenet_benchmark.yml file. To do so, run:

conda env create -f eegeyenet_benchmark.yml

Otherwise you can also only create a minimal environment that is able to run the models that you want to try (see following section).

General Requirements

Create a new conda environment:

conda create -n eegeyenet_benchmark python=3.8.5 

First install the general_requirements.txt

conda install --file general_requirements.txt 

Pytorch Requirements

If you want to run the pytorch DL models, first install pytorch in the recommended way. For Linux users with GPU support this is:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch 

For other installation types and cuda versions, visit pytorch.org.

Tensorflow Requirements

If you want to run the tensorflow DL models, run

conda install --file tensorflow_requirements.txt 

Standard ML Requirements

If you want to run the standard ML models, run

conda install --file standard_ml_requirements.txt 

This should be installed after installing pytorch to not risk any dependency issues that have to be resolved by conda.

Configuration

The model configuration takes place in hyperparameters.py. The training configuration is contained in config.py.

config.py

We start by explaining the settings that can be made for running the benchmark:

Choose the task to run in the benchmark, e.g.

config['task'] = 'LR_task'

For some tasks we offer data from multiple paradigms. Choose the dataset used for the task, e.g.

config['dataset'] = 'antisaccade'

Choose the preprocessing variant, e.g.

config['preprocessing'] = 'min'

Choose data preprocessed with Hilbert transformation. Set to True for the standard ML models:

config['feature_extraction'] = True

Include our standard ML models into the benchmark run:

config['include_ML_models'] = True 

Include our deep learning models into the benchmark run:

config['include_DL_models'] = True

Include your own models as specified in hyperparameters.py. For instructions on how to create your own custom models see further below.

config['include_your_models'] = True

Include dummy models for comparison into the benchmark run:

config['include_dummy_models'] = True

You can either choose to train models or use existing ones in /run/ and perform inference with them. Set

config['retrain'] = True 
config['save_models'] = True 

to train your specified models. Set both to False if you want to load existing models and perform inference. In this case specify the path to your existing model directory under

config['load_experiment_dir'] = path/to/your/model 

In the model configuration section you can specify which framework you want to use. You can run our deep learning models in both pytorch and tensorflow. Just specify it in config.py, make sure you set up the environment as explained above and everything specific to the framework will be handled in the background.

config.py also allows to configure hyperparameters such as the learning rate, and enable early stopping of models.

hyperparameters.py

Here we define our models. Standard ML models and deep learning models are configured in a dictionary which contains the object of the model and hyperparameters that are passed when the object is instantiated.

You can add your own models in the your_models dictionary. Specify the models for each task separately. Make sure to enable all the models that you want to run in config.py.

Running the benchmark

Create a /runs directory to save files while running models on the benchmark.

benchmark.py

In benchmark.py we load all models specified in hyperparameters.py. Each model is fitted and then evaluated with the scoring function corresponding to the task that is benchmarked.

main.py

To start the benchmark, run

python3 main.py

A directory of the current run is created, containing a training log, saving console output and model checkpoints of all runs.

Add Custom Models

To benchmark models we use a common interface we call trainer. A trainer is an object that implements the following methods:

fit() 
predict() 
save() 
load() 

Implementation of custom models

To implement your own custom model make sure that you create a class that implements the above methods. If you use library models, make sure to wrap them into a class that implements above interface used in our benchmark.

Adding custom models to our benchmark pipeline

In hyperparameters.py add your custom models into the your_models dictionary. You can add objects that implement the above interface. Make sure to enable your custom models in config.py.

Owner
Ard Kastrati
Ard Kastrati
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022