Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

Overview

PWC

EgoNet

Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo includes an implementation that performs vehicle orientation estimation on the KITTI dataset from a single RGB image.

News:

(2021-06-21): v-0.9 (beta version) is released. The inference utility is here! For Q&A, go to discussions. If you believe there is a technical problem, submit to issues.

(2021-06-16): This repo is under final code cleaning and documentation preparation. Stay tuned and come back in a week!

Check our 5-min video (Youtube, 爱奇艺) for an introduction.

Run a demo with a one-line command!

Check instructions here.

Performance: APBEV@R40 on KITTI val set for Car (monocular RGB)

Method Reference Easy Moderate Hard
M3D-RPN ICCV 2019 20.85 15.62 11.88
MonoDIS ICCV 2019 18.45 12.58 10.66
MonoPair CVPR 2020 24.12 18.17 15.76
D4LCN CVPR 2020 31.53 22.58 17.87
Kinematic3D ECCV 2020 27.83 19.72 15.10
GrooMeD-NMS CVPR 2021 27.38 19.75 15.92
MonoDLE CVPR 2021 24.97 19.33 17.01
Ours CVPR 2021 33.60 25.38 22.80

Performance: [email protected]40 on KITTI test set for Car (RGB)

Method Reference Configuration Easy Moderate Hard
M3D-RPN ICCV 2019 Monocular 88.38 82.81 67.08
DSGN CVPR 2020 Stereo 95.42 86.03 78.27
Disp-RCNN CVPR 2020 Stereo 93.02 81.70 67.16
MonoPair CVPR 2020 Monocular 91.65 86.11 76.45
D4LCN CVPR 2020 Monocular 90.01 82.08 63.98
Kinematic3D ECCV 2020 Monocular 58.33 45.50 34.81
MonoDLE CVPR 2021 Monocular 93.46 90.23 80.11
Ours CVPR 2021 Monocular 96.11 91.23 80.96

Inference/Deployment

Check instructions here to reproduce the above quantitative results.

Training

Check instructions here to train Ego-Net and learn how to prepare your own training dataset other than KITTI.

Citation

Please star this repository and cite the following paper in your publications if it helps your research:

@InProceedings{Li_2021_CVPR,
author    = {Li, Shichao and Yan, Zengqiang and Li, Hongyang and Cheng, Kwang-Ting},
title     = {Exploring intermediate representation for monocular vehicle pose estimation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month     = {June},
year      = {2021},
pages     = {1873-1883}
}

License

This repository can be used freely for non-commercial purposes. Contact me if you are interested in a commercial license.

Links

Link to the paper: Exploring intermediate representation for monocular vehicle pose estimation

Link to the presentation video: Youtube, 爱奇艺

Relevant ECCV 2020 work: GSNet

Comments
  • Inference on custom dataset does not give proper 3d bboxes

    Inference on custom dataset does not give proper 3d bboxes

    Hi! I am trying to use the EgoNet on a custom dataset (such as Waymo Dataset) and generate 3D bboxes from the 2D predictions generated by 2D bbox detectors such as Faster R-CNN.

    A sample of KITTI predictions where 2D bboxes are output but 3D bboxes are not yet output are as follows:

    Car -1 -1 0.0 158.0 386.0 220.0 438.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 0.0 0.95
    Car -1 -1 0.0 565.0 386.0 720.0 438.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 0.0 0.95
    

    However, when I set these 2D predictions as additional input for predicting bboxes using EgoNet, the 3D bboxes are not properly output at all and are just a bunch of zeros and minus-ones.

    What should I do?

    opened by joonjeon 8
  • Stream from camera

    Stream from camera

    hello, thanks for you amazing work.

    I would like to ask, what kind of changes do I need to apply in order to perform a stream from camera and detect a pose of object e.g pedestrians. Do I need to re-train your model as well?

    Thanks for answer in an advance

    opened by adamanov 7
  • Running the model on a single image

    Running the model on a single image

    Hey Nicholasli1995,

    Thanks for putting together this awesome repo, I really appreciate how thoroughly documented the setup is.

    Would it be possible to get a few hints as to how to run the model on a single image as opposed to a directory?

    I see that the data_loader in 'inference' is nearly directly from PyTorch, so it's probably my lack of experience with PyTorch that has me confused.

    Separately, I also tried making my own directory and referencing it in my .yaml file, the following command still gave me an error about referencing the KITTI dataset

    python .\inference.py --cfg "../configs/single_inference_test.yml" --visualize True --batch_to_show 1

    image

    I was a little bit surprised to see "training" in the file not found path as I'm not asking to train -- I would expect to have to place an analogous 'test.txt' in this directory with the single test image filename, but I don't think that's currently the issue.

    Thanks! Clayton

    opened by claytonkanderson 5
  • About the license for this model

    About the license for this model

    Thank you for sharing your great code. :smiley_cat:

    What is the license for this model? I'd like to cite it to the repository I'm working on if possible, but I want to post the license correctly. https://github.com/PINTO0309/PINTO_model_zoo

    Thank you.

    opened by PINTO0309 2
  • Reproduce results on the test split

    Reproduce results on the test split

    Thanks for your great work. However, I have some confusion in “Reproduce results on the test split”. If I understand correctly, the inputs to the model are 2D bounding boxes which located in “../resources/test_boxes” and the outputs should be 3D bounding boxes which placed in “../output/submission/data”. However, the results I got were not 3D bounding boxes, as follows: Drawing The results do not contain 3D information. Is it because I made a mistake somewhere?

    opened by Vncois-ZXJ 2
  • No arg_max in KITTI_train_ICRs.yml file

    No arg_max in KITTI_train_ICRs.yml file

    Hello, firstly I would like to thanks for an amazing work and that you made it public with great documentation in order to reproduce and re train the network.

    Today I wanted to train your network according to training - stage2. However, by running the code I got an error as following

    $ python train_IGRs.py --cfg "../configs/KITTI_train_IGRs.yml"
    
    => init weights from normal distribution
    => loading pretrained model ../resources/start_point.pth
    
    Total Parameters: 63,978,471
    ----------------------------------------------------------------------------------------------------------------------------------
    Total Multiply Adds (For Convolution and Linear Layers only): 19.573845863342285 GFLOPs
    ----------------------------------------------------------------------------------------------------------------------------------
    Number of Layers
    Conv2d : 306 layers   BatchNorm2d : 304 layers   ReLU : 269 layers   Bottleneck : 4 layers   BasicBlock : 108 layers   Upsample : 28 layers   HighResolutionModule : 8 layers   Sigmoid : 1 layers   
    Initializing KITTI train set, please wait...
    Found prepared keypoints at ../kitti_dataset/training/keypoints/bbox9[0.332, 0.667]_train_['Car'].npy
    Found prepared instance_ids at ../kitti_dataset/training/keypoints/bbox9[0.332, 0.667]_train_['Car']_ids.npy
    Found prepared rotations at ../kitti_dataset/training/keypoints/bbox9[0.332, 0.667]_train_['Car']_rots.npy
    Initialization finished for KITTI train set
    Initializing KITTI valid set, please wait...
    Found prepared keypoints at ../kitti_dataset/training/keypoints/bbox9[0.332, 0.667]_valid_['Car'].npy
    Found prepared instance_ids at ../kitti_dataset/training/keypoints/bbox9[0.332, 0.667]_valid_['Car']_ids.npy
    Found prepared rotations at ../kitti_dataset/training/keypoints/bbox9[0.332, 0.667]_valid_['Car']_rots.npy
    Initialization finished for KITTI valid set
    Traceback (most recent call last):
      File "train_IGRs.py", line 159, in <module>
        main()
      File "train_IGRs.py", line 154, in main
        train(model, model_settings, GPUs, cfgs, logger, final_output_dir)
      File "train_IGRs.py", line 89, in train
        trainer.train(train_dataset=train_dataset, 
      File "../libs/trainer/trainer.py", line 154, in train
        evaluator = Evaluator(cfgs['training_settings']['eval_metrics'], 
      File "../libs/metric/criterions.py", line 546, in __init__
        self.metrics.append(eval(metric + '(cfgs=cfgs, num_joints=num_joints)'))
      File "<string>", line 1, in <module>
      File "../libs/metric/criterions.py", line 183, in __init__
        self.arg_max = cfgs['testing_settings']['arg_max']
    KeyError: 'arg_max
    

    It seems that arg_max key is missing in the KITTI_train_IGRs.yml

    How to arg_max parameter should be defined?

    Thanks for answer in advance.

    opened by adamanov 1
  • Reproduce Result in Kitti dataset

    Reproduce Result in Kitti dataset

    Hello @Nicholasli1995 thank you for your implementation. I have several questions.

    1. What split (train and validation split) did you use for this code? is it subcnn split?
    2. during the inference using testing set do you use ROI from the object detection algorithm?
    3. Is it still use the calibration or this system can automatically generate it?
    4. How to produce the similar table as in paper? I see that you use AOS, AP, also something like Easy, Medium, Hard. However when I tried to use validation set evaluation and use kitti_eval_offline I only got some plots, and statistic informations in txt and final result as here.
    python inference.py --cfg "../configs/try_KITTI_inference:test_submission.yml"
    
    Wrote prediction file at ../result/gt_box_test/data/007025.txt
    Warning: 007025.png not included in detected images!
    PDFCROP 1.38, 2012/11/02 - Copyright (c) 2002-2012 by Heiko Oberdiek.
    ==> 1 page written on `car_detection.pdf'.
    PDFCROP 1.38, 2012/11/02 - Copyright (c) 2002-2012 by Heiko Oberdiek.
    ==> 1 page written on `car_orientation.pdf'.
    PDFCROP 1.38, 2012/11/02 - Copyright (c) 2002-2012 by Heiko Oberdiek.
    ==> 1 page written on `car_detection_ground.pdf'.
    PDFCROP 1.38, 2012/11/02 - Copyright (c) 2002-2012 by Heiko Oberdiek.
    ==> 1 page written on `car_detection_3d.pdf'.
    Thank you for participating in our evaluation!
    Loading detections...
    number of files for evaluation: 1634
      done.
    save ../result/submission/plot/car_detection.txt
    car_detection AP: 93.934082 84.951851 67.594185
    save ../result/submission/plot/car_orientation.txt
    car_orientation AP: 93.664360 84.683617 67.141930
    save ../result/submission/plot/car_detection_ground.txt
    car_detection_ground AP: 41.456226 31.880611 24.876181
    save ../result/submission/plot/car_detection_3d.txt
    car_detection_3d AP: 29.933027 24.017235 18.650723
    Your evaluation results are available at:
    ../result/submission
    

    It only produce AP no AOS. Is it because you use testing set then evaluate directly on KITTI evaluation systems so they will provide you the detail result? Suppose we want to measure in Validation set, which value must I use? because there are many information such as car_detection AP car_orientation AP car_detection_ground AP car_detection_3d AP. So in specific how to produce table 1 as in paper if we use validation set?

    -Thank you-

    opened by ftlong6666 1
  • Visualazition problem

    Visualazition problem

    Thank you for share your huge work ! Can the output coordinates of the model be directly visualized, does any transformation is needed to display them in the original image?

    opened by xiaozhihao0 0
  • Relation between kpts_3d_pred and pose

    Relation between kpts_3d_pred and pose

    Hello, Thank you for open-sourcing this amazing project!

    I have a question about the convention for the transformation of the 3D box. EgoNet only produces an egocentric pose (i.e. camera coordinates) corresponding to the rotation between the 3D box extracted from the keypoints and a template 3D box. We also have a translation corresponding to the first point in kpts_3D_pred, here.

    To better understand the coordinate systems involved I'm doing the following experiment:

    1. Create a template 3D bounding box following this, in the canonical pose.
    2. Rotate it with the rotation matrix given by EgoNet, this one

    After doing these two steps, I still need one translation to place the 3D box in space (in the camera system). The question is, what translation should I use? Is it the one corresponding to the first point in kpts_3d_pred?

    Thank you for your time

    opened by nviolante25 2
  • Generate 3D rectangular coordinates using 2D rectangular boxes

    Generate 3D rectangular coordinates using 2D rectangular boxes

    Thank you for the work you have done, and open source the code. I would like to ask how to use your code, will only 2D annotation box pictures with labels, generate 3D coordinate box used for detection tasks? I have a problem now, Is it necessary to have this file? I tried to modify it and got an error. I want to know what it does {{{ Download the resources folder and unzip its contents. Place the resource folder at ${EgoNet_DIR}/resources }}} English is translated by machine, If there is any improper wording, please forgive me Thanks you

    opened by yuan960426 4
  • Use EgoNet on custom data

    Use EgoNet on custom data

    Thank you for sharing your work. I want to use EgoNet for 3D bbox and object orientation estimation tasks on custom data. How should I proceed, do I need any other model's 2D/3D bbox predictions to start with or if I change the input data while testing I can get both 3D bbox and orientation predictions?

    opened by ratnam18 5
Releases(v-1.0)
Owner
Shichao Li
A PhD candidate @ HKUST working on computer vision and machine learning
Shichao Li
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022