(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

Overview

(CVPR 2022) TokenCut

Pytorch implementation of Tokencut:

Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut

Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L. Crowley, Dominique Vaufreydaz

[Project page] [Paper] Colab demo Hugging Face Spaces

TokenCut teaser

If our project is helpful for your research, please consider citing :

@inproceedings{wang2022tokencut,
          title={Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut},
          author={Wang, Yangtao and Shen, Xi and Hu, Shell Xu and Yuan, Yuan and Crowley, James L. and Vaufreydaz, Dominique},
          booktitle={Conference on Computer Vision and Pattern Recognition}
          year={2022}
        }

Table of Content

1. Updates

03/10/2022 Creating a 480p Demo using Gradio. Try out the Web Demo: Hugging Face Spaces

Internet image results:

TokenCut visualizations TokenCut visualizations TokenCut visualizations TokenCut visualizations

02/26/2022 Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo: Hugging Face Spaces

02/26/2022 A simple TokenCut Colab Demo is available.

02/21/2022 Initial commit: Code of TokenCut is released, including evaluation of unsupervised object discovery, unsupervised saliency object detection, weakly supervised object locolization.

2. Installation

2.1 Dependencies

This code was implemented with Python 3.7, PyTorch 1.7.1 and CUDA 11.2. Please refer to the official installation. If CUDA 10.2 has been properly installed :

pip install torch==1.7.1 torchvision==0.8.2

In order to install the additionnal dependencies, please launch the following command:

pip install -r requirements.txt

2.2 Data

We provide quick download commands in DOWNLOAD_DATA.md for VOC2007, VOC2012, COCO, CUB, ImageNet, ECSSD, DUTS and DUT-OMRON as well as DINO checkpoints.

3. Quick Start

3.1 Detecting an object in one image

We provide TokenCut visualization for bounding box prediction and attention map. Using all for all visualization results.

python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize pred
python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize attn
python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize all 

3.2 Segmenting a salient region in one image

We provide TokenCut segmentation results as follows:

cd unsupervised_saliency_detection 
python get_saliency.py --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --vit-arch small --patch-size 16 --img-path ../examples/VOC07_000036.jpg --out-dir ./output

4. Evaluation

Following are the different steps to reproduce the results of TokenCut presented in the paper.

4.1 Unsupervised object discovery

TokenCut visualizations TokenCut visualizations TokenCut visualizations

PASCAL-VOC

In order to apply TokenCut and compute corloc results (VOC07 68.8, VOC12 72.1), please launch:

python main_tokencut.py --dataset VOC07 --set trainval
python main_tokencut.py --dataset VOC12 --set trainval

If you want to extract Dino features, which corresponds to the KEY features in DINO:

mkdir features
python main_lost.py --dataset VOC07 --set trainval --save-feat-dir features/VOC2007

COCO

Results are provided given the 2014 annotations following previous works. The following command line allows you to get results on the subset of 20k images of the COCO dataset (corloc 58.8), following previous litterature. To be noted that the 20k images are a subset of the train set.

python main_tokencut.py --dataset COCO20k --set train

Different models

We have tested the method on different setups of the VIT model, corloc results are presented in the following table (more can be found in the paper).

arch pre-training dataset
VOC07 VOC12 COCO20k
ViT-S/16 DINO 68.8 72.1 58.8
ViT-S/8 DINO 67.3 71.6 60.7
ViT-B/16 DINO 68.8 72.4 59.0

Previous results on the dataset VOC07 can be obtained by launching:

python main_tokencut.py --dataset VOC07 --set trainval #VIT-S/16
python main_tokencut.py --dataset VOC07 --set trainval --patch_size 8 #VIT-S/8
python main_tokencut.py --dataset VOC07 --set trainval --arch vit_base #VIT-B/16

4.2 Unsupervised saliency detection

TokenCut visualizations TokenCut visualizations TokenCut visualizations

To evaluate on ECSSD, DUTS, DUT_OMRON dataset:

python get_saliency.py --out-dir ECSSD --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset ECSSD

python get_saliency.py --out-dir DUTS --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset DUTS

python get_saliency.py --out-dir DUT --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset DUT

This should give:

Method ECSSD DUTS DUT-OMRON
maxF IoU Acc maxF IoU Acc maxF IoU Acc
TokenCut 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
TokenCut + BS 87.4 77.2 93.4 75.5 62,4 91.4 69.7 61.8 89.7

4.3 Weakly supervised object detection

TokenCut visualizations TokenCut visualizations TokenCut visualizations

Fintune DINO small on CUB

To finetune ViT-S/16 on CUB on a single node with 4 gpus for 1000 epochs run:

python -m torch.distributed.launch --nproc_per_node=4 main.py --data_path /path/to/data --batch_size_per_gpu 256 --dataset cub --weight_decay 0.005 --pretrained_weights ./dino_deitsmall16_pretrain.pth --epoch 1000 --output_dir ./path/to/checkpoin --lr 2e-4 --warmup-epochs 50 --num_labels 200 --num_workers 16 --n_last_blocks 1 --avgpool_patchtokens true --arch vit_small --patch_size 16

Evaluation on CUB

To evaluate a fine-tuned ViT-S/16 on CUB val with a single GPU run:

python eval.py --pretrained_weights ./path/to/checkpoint --dataset cub --data_path ./path/to/data --batch_size_per_gpu 1 --no_center_crop

This should give:

Top1_cls: 79.12, top5_cls94.80, gt_loc: 0.914, top1_loc:0.723

Evaluate on Imagenet

To Evaluate ViT-S/16 finetuned on ImageNet val with a single GPU run:

python eval.py --pretrained_weights /path/to/checkpoint --classifier_weights /path/to/linear_weights--dataset imagenet --data_path ./path/to/data --batch_size_per_gpu 1 --num_labels 1000 --batch_size_per_gpu 1 --no_center_crop --input_size 256 --tau 0.2 --patch_size 16 --arch vit_small

5. Acknowledgement

TokenCut code is built on top of LOST, DINO, Segswap, and Bilateral_Sovlver. We would like to sincerely thanks those authors for their great works.

Owner
YANGTAO WANG
PhD, Computer Vision, Deep Learning
YANGTAO WANG
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022