(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

Overview

(CVPR 2022) TokenCut

Pytorch implementation of Tokencut:

Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut

Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L. Crowley, Dominique Vaufreydaz

[Project page] [Paper] Colab demo Hugging Face Spaces

TokenCut teaser

If our project is helpful for your research, please consider citing :

@inproceedings{wang2022tokencut,
          title={Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut},
          author={Wang, Yangtao and Shen, Xi and Hu, Shell Xu and Yuan, Yuan and Crowley, James L. and Vaufreydaz, Dominique},
          booktitle={Conference on Computer Vision and Pattern Recognition}
          year={2022}
        }

Table of Content

1. Updates

03/10/2022 Creating a 480p Demo using Gradio. Try out the Web Demo: Hugging Face Spaces

Internet image results:

TokenCut visualizations TokenCut visualizations TokenCut visualizations TokenCut visualizations

02/26/2022 Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo: Hugging Face Spaces

02/26/2022 A simple TokenCut Colab Demo is available.

02/21/2022 Initial commit: Code of TokenCut is released, including evaluation of unsupervised object discovery, unsupervised saliency object detection, weakly supervised object locolization.

2. Installation

2.1 Dependencies

This code was implemented with Python 3.7, PyTorch 1.7.1 and CUDA 11.2. Please refer to the official installation. If CUDA 10.2 has been properly installed :

pip install torch==1.7.1 torchvision==0.8.2

In order to install the additionnal dependencies, please launch the following command:

pip install -r requirements.txt

2.2 Data

We provide quick download commands in DOWNLOAD_DATA.md for VOC2007, VOC2012, COCO, CUB, ImageNet, ECSSD, DUTS and DUT-OMRON as well as DINO checkpoints.

3. Quick Start

3.1 Detecting an object in one image

We provide TokenCut visualization for bounding box prediction and attention map. Using all for all visualization results.

python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize pred
python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize attn
python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize all 

3.2 Segmenting a salient region in one image

We provide TokenCut segmentation results as follows:

cd unsupervised_saliency_detection 
python get_saliency.py --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --vit-arch small --patch-size 16 --img-path ../examples/VOC07_000036.jpg --out-dir ./output

4. Evaluation

Following are the different steps to reproduce the results of TokenCut presented in the paper.

4.1 Unsupervised object discovery

TokenCut visualizations TokenCut visualizations TokenCut visualizations

PASCAL-VOC

In order to apply TokenCut and compute corloc results (VOC07 68.8, VOC12 72.1), please launch:

python main_tokencut.py --dataset VOC07 --set trainval
python main_tokencut.py --dataset VOC12 --set trainval

If you want to extract Dino features, which corresponds to the KEY features in DINO:

mkdir features
python main_lost.py --dataset VOC07 --set trainval --save-feat-dir features/VOC2007

COCO

Results are provided given the 2014 annotations following previous works. The following command line allows you to get results on the subset of 20k images of the COCO dataset (corloc 58.8), following previous litterature. To be noted that the 20k images are a subset of the train set.

python main_tokencut.py --dataset COCO20k --set train

Different models

We have tested the method on different setups of the VIT model, corloc results are presented in the following table (more can be found in the paper).

arch pre-training dataset
VOC07 VOC12 COCO20k
ViT-S/16 DINO 68.8 72.1 58.8
ViT-S/8 DINO 67.3 71.6 60.7
ViT-B/16 DINO 68.8 72.4 59.0

Previous results on the dataset VOC07 can be obtained by launching:

python main_tokencut.py --dataset VOC07 --set trainval #VIT-S/16
python main_tokencut.py --dataset VOC07 --set trainval --patch_size 8 #VIT-S/8
python main_tokencut.py --dataset VOC07 --set trainval --arch vit_base #VIT-B/16

4.2 Unsupervised saliency detection

TokenCut visualizations TokenCut visualizations TokenCut visualizations

To evaluate on ECSSD, DUTS, DUT_OMRON dataset:

python get_saliency.py --out-dir ECSSD --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset ECSSD

python get_saliency.py --out-dir DUTS --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset DUTS

python get_saliency.py --out-dir DUT --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset DUT

This should give:

Method ECSSD DUTS DUT-OMRON
maxF IoU Acc maxF IoU Acc maxF IoU Acc
TokenCut 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
TokenCut + BS 87.4 77.2 93.4 75.5 62,4 91.4 69.7 61.8 89.7

4.3 Weakly supervised object detection

TokenCut visualizations TokenCut visualizations TokenCut visualizations

Fintune DINO small on CUB

To finetune ViT-S/16 on CUB on a single node with 4 gpus for 1000 epochs run:

python -m torch.distributed.launch --nproc_per_node=4 main.py --data_path /path/to/data --batch_size_per_gpu 256 --dataset cub --weight_decay 0.005 --pretrained_weights ./dino_deitsmall16_pretrain.pth --epoch 1000 --output_dir ./path/to/checkpoin --lr 2e-4 --warmup-epochs 50 --num_labels 200 --num_workers 16 --n_last_blocks 1 --avgpool_patchtokens true --arch vit_small --patch_size 16

Evaluation on CUB

To evaluate a fine-tuned ViT-S/16 on CUB val with a single GPU run:

python eval.py --pretrained_weights ./path/to/checkpoint --dataset cub --data_path ./path/to/data --batch_size_per_gpu 1 --no_center_crop

This should give:

Top1_cls: 79.12, top5_cls94.80, gt_loc: 0.914, top1_loc:0.723

Evaluate on Imagenet

To Evaluate ViT-S/16 finetuned on ImageNet val with a single GPU run:

python eval.py --pretrained_weights /path/to/checkpoint --classifier_weights /path/to/linear_weights--dataset imagenet --data_path ./path/to/data --batch_size_per_gpu 1 --num_labels 1000 --batch_size_per_gpu 1 --no_center_crop --input_size 256 --tau 0.2 --patch_size 16 --arch vit_small

5. Acknowledgement

TokenCut code is built on top of LOST, DINO, Segswap, and Bilateral_Sovlver. We would like to sincerely thanks those authors for their great works.

Owner
YANGTAO WANG
PhD, Computer Vision, Deep Learning
YANGTAO WANG
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022