Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

Overview

CuPyTorch

CuPyTorch是一个小型PyTorch,名字来源于:

  1. 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持cuda计算
  2. 发音与Cool PyTorch接近,因为使用不超过1000行纯Python代码实现PyTorch确实很cool

CuPyTorch支持numpy和cupy两种计算后端,实现大量PyTorch常用功能,力求99%兼容PyTorch语法语义,并能轻松扩展,以下列出已经完成的功能:

  • tensor:

    • tensor: 创建张量
    • arange: 区间等差张量
    • stack: 堆叠张量
    • ones/zeros, ones/zeros_like: 全1/0张量
    • rand/randn, rand/randn_like: 0~1均匀分布/高斯分布张量
    • +, -, *, /, @, **: 双目数值运算及其右值和原地操作
    • >, <, ==, >=, <=, !=: 比较运算
    • &, |, ^: 双目逻辑运算
    • ~, -: 取反/取负运算
    • []: 基本和花式索引和切片操作
    • abs, exp, log, sqrt: 数值运算
    • sum, mean: 数据归约操作
    • max/min, amax/amin, argmax/argmin: 最大/小值及其索引计算
  • autograd: 支持以上所有非整数限定运算的自动微分

  • nn:

    • Module: 模型基类,管理参数,格式化打印
    • activation: ReLU, GeLU, Sigmoid, Tanh, Softmax, LogSoftmax
    • loss: L1Loss, MSELoss, NLLLoss, CrossEntropyLoss
    • layer: Linear, Dropout ,LSTM
  • optim:

    • Optimizer: 优化器基类,管理参数,格式化打印
    • SGD, Adam: 两个最常见的优化器
    • lr_scheduler: LambdaLRStepLR学习率调度器
  • utils.data:

    • DataLoader: 批量迭代Tensor数据,支持随机打乱
    • Dataset: 数据集基类,用于继承
    • TensorDataset: 纯用Tensor构成的数据集

cloc的代码统计结果:

Language files blank comment code
Python 22 353 27 992

自动微分示例:

import cupytorch as ct

a = ct.tensor([[-1., 2], [-3., 4.]], requires_grad=True)
b = ct.tensor([[4., 3.], [2., 1.]], requires_grad=True)
c = ct.tensor([[1., 2.], [0., 2.]], requires_grad=True)
d = ct.tensor([1., -2.], requires_grad=True)
e = a @ b.T
f = (c.max(1)[0].exp() + e[:, 0] + b.pow(2) + 2 * d.reshape(2, 1).abs()).mean()
print(f)
f.backward()
print(a.grad)
print(b.grad)
print(c.grad)
print(d.grad)

# tensor(18.889057, grad_fn=<MeanBackward>)
# tensor([[2.  1.5]
#         [2.  1.5]])
# tensor([[0.  4.5]
#         [1.  0.5]])
# tensor([[0.       3.694528]
#         [0.       3.694528]])
# tensor([ 1. -1.])

手写数字识别示例:

from pathlib import Path
import cupytorch as ct
from cupytorch import nn
from cupytorch.optim import SGD
from cupytorch.optim.lr_scheduler import StepLR
from cupytorch.utils.data import TensorDataset, DataLoader


class Net(nn.Module):
    
    def __init__(self, num_pixel: int, num_class: int):
        super().__init__()
        self.num_pixel = num_pixel
        self.fc1 = nn.Linear(num_pixel, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64, num_class)
        self.act = nn.ReLU()
        self.drop = nn.Dropout(0.1)
    
    def forward(self, input: ct.Tensor) -> ct.Tensor:
        output = input.view(-1, self.num_pixel)
        output = self.drop(self.act(self.fc1(output)))
        output = self.drop(self.act(self.fc2(output)))
        return self.fc3(output)


def load(path: Path):
    # define how to load data as tensor
    pass


path = Path('../datasets/MNIST')
train_dl = DataLoader(TensorDataset(load(path / 'train-images-idx3-ubyte.gz'),
                                    load(path / 'train-labels-idx1-ubyte.gz')),
                      batch_size=20, shuffle=True)
test_dl = DataLoader(TensorDataset(load(path / 't10k-images-idx3-ubyte.gz'),
                                   load(path / 't10k-labels-idx1-ubyte.gz')),
                     batch_size=20, shuffle=False)
model = Net(28 * 28, 10)
criterion = nn.CrossEntropyLoss()
optimizer = SGD(model.parameters(), lr=1e-3, momentum=0.9)
scheduler = StepLR(optimizer, 5, 0.5)

print(model)
print(optimizer)
print(criterion)

for epoch in range(10):
    losses = 0
    for step, (x, y) in enumerate(train_dl, 1):
        optimizer.zero_grad()
        z = model(x)
        loss = criterion(z, y)
        loss.backward()
        optimizer.step()
        losses += loss.item()
        if step % 500 == 0:
            losses /= 500
            print(f'Epoch: {epoch}, Train Step: {step}, Train Loss: {losses:.6f}')
            losses = 0
    scheduler.step()

examples文件夹中提供了两个完整示例:

  • MNIST数据集上使用MLP做手写数字分类
  • NN5数据集上使用LSTM做ATM机取款预测

参考:

Owner
Xingkai Yu
Xingkai Yu
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023