tree-math: mathematical operations for JAX pytrees

Overview

tree-math: mathematical operations for JAX pytrees

tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterative methods for optimization and equation solving. It does so by providing a wrapper class tree_math.Vector that defines array operations such as infix arithmetic and dot-products on pytrees as if they were vectors.

Why tree-math

In a library like SciPy, numerical algorithms are typically written to handle fixed-rank arrays, e.g., scipy.integrate.solve_ivp requires inputs of shape (n,). This is convenient for implementors of numerical methods, but not for users, because 1d arrays are typically not the best way to keep track of state for non-trivial functions (e.g., neural networks or PDE solvers).

tree-math provides an alternative to flattening and unflattening these more complex data structures ("pytrees") for use in numerical algorithms. Instead, the numerical algorithm itself can be written in way to handle arbitrary collections of arrays stored in pytrees. This avoids unnecessary memory copies, and gives the user more control over the memory layouts used in computation. In practice, this can often makes a big difference for computational efficiency as well, which is why support for flexible data structures is so prevalent inside libraries that use JAX.

Installation

tree-math is implemented in pure Python, and only depends upon JAX.

You can install it from PyPI: pip install tree-math.

User guide

tree-math is simple to use. Just pass arbitrary pytree objects into tree_math.Vector to create an a object that arithmetic as if all leaves of the pytree were flattened and concatenated together:

>>> import tree_math as tm
>>> import jax.numpy as jnp
>>> v = tm.Vector({'x': 1, 'y': jnp.arange(2, 4)})
>>> v
tree_math.Vector({'x': 1, 'y': DeviceArray([2, 3], dtype=int32)})
>>> v + 1
tree_math.Vector({'x': 2, 'y': DeviceArray([3, 4], dtype=int32)})
>>> v.sum()
DeviceArray(6, dtype=int32)

You can also find a few functions defined on vectors in tree_math.numpy, which implements a very restricted subset of jax.numpy. If you're interested in more functionality, please open an issue to discuss before sending a pull request. (In the long term, this separate module might disappear if we can support Vector objects directly inside jax.numpy.)

Vector objects are pytrees themselves, which means the are compatible with JAX transformations like jit, vmap and grad, and control flow like while_loop and cond.

When you're done manipulating vectors, you can pull out the underlying pytrees from the .tree property:

>>> v.tree
{'x': 1, 'y': DeviceArray([2, 3], dtype=int32)}

As an alternative to manipulating Vector objects directly, you can also use the functional transformations wrap and unwrap (see the "Example usage" below).

One important difference between tree_math and jax.numpy is that dot products in tree_math default to full precision on all platforms, rather than defaulting to bfloat16 precision on TPUs. This is useful for writing most numerical algorithms, and will likely be JAX's default behavior in the future.

In the near-term, we also plan to add a Matrix class that will make it possible to use tree-math for numerical algorithms such as L-BFGS which use matrices to represent stacks of vectors.

Example usage

Here is how we could write the preconditioned conjugate gradient method. Notice how similar the implementation is to the pseudocode from Wikipedia, unlike the implementation in JAX:

atol2) & (k < maxiter) def body_fun(value): x, r, gamma, p, k = value Ap = A(p) alpha = gamma / (p.conj() @ Ap) x_ = x + alpha * p r_ = r - alpha * Ap z_ = M(r_) gamma_ = r_.conj() @ z_ beta_ = gamma_ / gamma p_ = z_ + beta_ * p return x_, r_, gamma_, p_, k + 1 r0 = b - A(x0) p0 = z0 = M(r0) gamma0 = r0 @ z0 initial_value = (x0, r0, gamma0, p0, 0) x_final, *_ = lax.while_loop(cond_fun, body_fun, initial_value) return x_final">
import functools
from jax import lax
import tree_math as tm
import tree_math.numpy as tnp

@functools.partial(tm.wrap, vector_argnames=['b', 'x0'])
def cg(A, b, x0, M=lambda x: x, maxiter=5, tol=1e-5, atol=0.0):
  """jax.scipy.sparse.linalg.cg, written with tree_math."""
  A = tm.unwrap(A)
  M = tm.unwrap(M)

  atol2 = tnp.maximum(tol**2 * (b @ b), atol**2)

  def cond_fun(value):
    x, r, gamma, p, k = value
    return (r @ r > atol2) & (k < maxiter)

  def body_fun(value):
    x, r, gamma, p, k = value
    Ap = A(p)
    alpha = gamma / (p.conj() @ Ap)
    x_ = x + alpha * p
    r_ = r - alpha * Ap
    z_ = M(r_)
    gamma_ = r_.conj() @ z_
    beta_ = gamma_ / gamma
    p_ = z_ + beta_ * p
    return x_, r_, gamma_, p_, k + 1

  r0 = b - A(x0)
  p0 = z0 = M(r0)
  gamma0 = r0 @ z0
  initial_value = (x0, r0, gamma0, p0, 0)

  x_final, *_ = lax.while_loop(cond_fun, body_fun, initial_value)
  return x_final
Owner
Google
Google ❤️ Open Source
Google
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023