This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

Related tags

Deep LearningGMPQ
Overview

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation

This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021. This repo contains searching the quantization policy via attribution preservation on small datasets including CIFAR-10, Cars, Flowers, Aircraft, Pets and Food, and finetuning on largescale dataset like ImageNet using our proposed GMPQ.

Quick Start

Prerequisites

  • python>=3.5
  • pytorch>=1.1.0
  • torchvision>=0.3.0
  • other packages like numpy and sklearn

Dataset

If you already have the ImageNet dataset for pytorch, you could create a link to data folder and use it:

# prepare dataset, change the path to your own
ln -s /path/to/imagenet/ data/

If you don't have the ImageNet, you can use the following script to download it: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

For small datasets which we search the quantization policy on, please follow the official instruction:

Searching the mixed-precision quantization policy

For a specific small dataset, you should first pretrain a full-precision model to provide supervision for attribution rank consistency preservation and save it to pretrain_model.pth.tar.

After that, you can start searching the quantization policy. Take ResNet18 and CIFAR-10 for example:

CUDA_VISIBLE_DEVICES=0,1 python search_attention.py \
-a mixres18_w2346a2346  -fa qresnet18_cifar  --epochs 25  --pretrained pretrain_model.pth.tar --aw 40 \
--dataname cifar10 --expname cifar10_resnet18  --cd 0.0003   --step-epoch 10    \
--batch-size 256   --lr 0.1   --lra 0.01 -j 16  \
  path/to/cifar10 \

It also supports other network architectures like ResNet50 and other small datasets like Cars, Flowers, Aircraft, Pets and Food.

Finetuning on ImageNet

After searching, you can get the optimal quantization policy, with the checkpoint arch_checkpoint.pth.tar. You can run the following command to finetune and evaluate the performance on ImageNet dataset.


CUDA_VISIBLE_DEVICES=0,1 python main.py     \
 -a qresnet18                 \
 --ac arch_checkpoint.pth.tar \
 -c checkpoints/train_resnet18   \
 --data_name imagenet          \
 --data path/to/imagenet           \
 --epochs 100                     \
 --pretrained pretrained.pth.tar
 --lr 0.01                    \
 --gpu_id 1,2,3     \
 --train_batch_per_gpu 192              \
 --wd 4e-5                       \
 --workers 32                    \
Owner
IVG Lab, Department of Automation, Tsinghua Univeristy
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022