A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Overview

Paper

Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021

Our code is mainly based on the code from the paper: Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua Lin, Chen Change Loy, "Self-Supervised Scene De-occlusion"

Requirements

  • pytorch>=0.4.1

    pip install -r requirements.txt

Data Preparation

COCOA dataset proposed in Semantic Amodal Segmentation.

  1. Download COCO2014 train and val images from here and unzip.

  2. Download COCOA annotations from here and untar.

  3. Ensure the COCOA folder looks like:

    COCOA/
      |-- train2014/
      |-- val2014/
      |-- annotations/
        |-- COCO_amodal_train2014.json
        |-- COCO_amodal_val2014.json
        |-- COCO_amodal_test2014.json
        |-- ...
    
  4. Create symbolic link:

    cd deocclusion
    mkdir data
    cd data
    ln -s /path/to/COCOA
    

KINS dataset proposed in Amodal Instance Segmentation with KINS Dataset.

  1. Download left color images of object data in KITTI dataset from here and unzip.

  2. Download KINS annotations from here corresponding to this commit.

  3. Ensure the KINS folder looks like:

    KINS/
      |-- training/image_2/
      |-- testing/image_2/
      |-- instances_train.json
      |-- instances_val.json
    
  4. Create symbolic link:

    cd deocclusion/data
    ln -s /path/to/KINS
    

Train

train PCNet-M

  1. Train (taking COCOA for example).

    ./train_pcnet_m_std_no_rgb_gaussian.sh
    
  2. Monitoring status and visual results using tensorboard.

    sh tensorboard.sh $PORT
    

Evaluate

  • Execute:

    ./test_pcnet_m.sh

Bibtex

@InProceedings{Nguyen_2021_ICCV,
    author    = {Nguyen, Khoi and Todorovic, Sinisa},
    title     = {A Weakly Supervised Amodal Segmenter With Boundary Uncertainty Estimation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {7396-7405}
}

Acknowledgement

  1. We developed our approach based on the code from https://github.com/XiaohangZhan/deocclusion/

  2. We used the code and models of GCA-Matting in our demo.

  3. We modified some code from pytorch-inpainting-with-partial-conv to train the PCNet-C.

Owner
Khoi Nguyen
Ph.D. in Computer Science with major in Computer Vision
Khoi Nguyen
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022