This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Overview

Learning to Learn Graph Topologies

This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Requirement

The code has been tested under:

  • Python == 3.6.0

  • PyTorch >= 1.4.0 | CUDA == 10.1

Overview

A quick summary of different folders:

  • src/models.py contains the source code for the proposed L2G and Unrolling.

  • src/baselines.py contains the source code for the iterative algorithm PDS and ADMM.

  • src/utils.py contains utility functions.

  • src/utils_data.py contains the code for generating synthetic data and graphs.

  • data/ is a folder for datasets.

  • log/ contains training logs.

  • saved_model/ is a folder to store trained models.

  • saved_results/ is a folder to store testing results.

  • data_simulation.py contains a code snippet of generating synthetic data and graphs.

  • main_L2G.py includes the code for training, validating and testing L2G.

  • main_Unrolling.py includes the code for training, validating and testing Unrolling.

Examples

As there is a requirement on the maximum file size for submissions, we cannot upload all the experimental results and dataset. However, we include all the source code and some of the results as below.

  • Training and testing L2G on scale-free networks, run:

    export PYTHONPATH=$PATHONPATH:'pwd' &&
    python data_simulation.py &&
    python main_L2G.py --graph_type='BA' --n_epochs=100

    One can find a running log of training and validation loss per epoch at logs/L2G_BA_m20_x20.log. The trained model and test results are automatically saved in saved_model/L2G_BA20_unroll20.pt and saved_results/L2G_BA20_unroll20.pt.

  • Training and testing Unrolling (ablation study) on scale-free networks, run:

    export PYTHONPATH=$PATHONPATH:'pwd' &&
    python data_simulation.py &&
    python main_Unrolling.py --graph_type='BA' --n_epochs=100
  • In L2G_WS_m50_x20.ipynb, we show a step-by-step example of training and testing L2G on small-world graphs.

For all the above examples, the results are saved in saved_results/ and the trained models are saved in saved_model/ .

Owner
Stacy X PU
A PhD Candidate in Machine Learning at Oxford
Stacy X PU
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022