Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Related tags

Deep LearningbigBatch
Overview

Train longer, generalize better - Big batch training

This is a code repository used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks" By Elad Hoffer, Itay Hubara and Daniel Soudry.

It is based off convNet.pytorch with some helpful options such as:

  • Training on several datasets
  • Complete logging of trained experiment
  • Graph visualization of the training/validation loss and accuracy
  • Definition of preprocessing and optimization regime for each model

Dependencies

Data

  • Configure your dataset path at data.py.
  • To get the ILSVRC data, you should register on their site for access: http://www.image-net.org/

Experiment examples

python main_normal.py --dataset cifar10 --model resnet --save cifar10_resnet44_bs2048_lr_fix --epochs 100 --b 2048 --lr_bb_fix;
python main_normal.py --dataset cifar10 --model resnet --save cifar10_resnet44_bs2048_regime_adaptation --epochs 100 --b 2048 --lr_bb_fix --regime_bb_fix;
python main_gbn.py --dataset cifar10 --model resnet --save cifar10_resnet44_bs2048_ghost_bn256 --epochs 100 --b 2048 --lr_bb_fix --mini-batch-size 256;
python main_normal.py --dataset cifar100 --model resnet --save cifar100_wresnet16_4_bs1024_regime_adaptation --epochs 100 --b 1024 --lr_bb_fix --regime_bb_fix;
python main_gbn.py --model mnist_f1 --dataset mnist --save mnist_baseline_bs4096_gbn --epochs 50 --b 4096 --lr_bb_fix --no-regime_bb_fix --mini-batch-size 128;
  • See run_experiments.sh for more examples

Model configuration

Network model is defined by writing a .py file in models folder, and selecting it using the model flag. Model function must be registered in models/__init__.py The model function must return a trainable network. It can also specify additional training options such optimization regime (either a dictionary or a function), and input transform modifications.

e.g for a model definition:

class Model(nn.Module):

    def __init__(self, num_classes=1000):
        super(Model, self).__init__()
        self.model = nn.Sequential(...)

        self.regime = {
            0: {'optimizer': 'SGD', 'lr': 1e-2,
                'weight_decay': 5e-4, 'momentum': 0.9},
            15: {'lr': 1e-3, 'weight_decay': 0}
        }

        self.input_transform = {
            'train': transforms.Compose([...]),
            'eval': transforms.Compose([...])
        }
    def forward(self, inputs):
        return self.model(inputs)

 def model(**kwargs):
        return Model()
Owner
Elad Hoffer
Elad Hoffer
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021