KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

Overview

KDD CUP 2020: AutoGraph

Team: aister


  • Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei
  • Team Introduction: Most of our members come from the Search Ads Algorithm Team of the Meituan Dianping Advertising Platform Department. We participated in three of the five competitions held by KDD CUP 2020 and achieved promising results. We won first place in Debiasing(1/1895), first place in AutoGraph(1/149), and third place in Multimodalities Recall(3/1433).
  • Based on the business scenario of Meituan and Dianping App, the Search Ads Algorithm Team of Meituan Dianping has rich expertise in innovation and algorithm optimization in the field of cutting-edge technology, including but not limited to, conducting algorithm research and application in the fileds of Debiasing, Graph Learning and Multimodalities.
  • If you are interested in our team or would like to communicate with our team(b.t.w., we are hiring), you can email to [email protected].

Introduction


  • The competition inviting participants deploy AutoML solutions for graph representation learning, where node classification is chosen as the task to evaluate the quality of learned representations. There are 15 graph datasets which consists of five public datasets to develop AutoML solutions, five feedback datasets to evaluate solutions and other five unseen datasets for the final rankings. Each dataset contains the index value of the node, the processed characteristic value, and the weight of the directed edge. We proposed automatic solutions that can effectively and efficiently learn high-quality representation for each node based on the given features, neighborhood and structural information underlying the graph. Please refer to the competition official website for more details: https://www.automl.ai/competitions/3

Preprocess


  • Feature
    • The size of node degree can obviously represent the importance of node, but the information of node degree with too much value is easy to overfit. So we bucket the node degree.
    • Node index embedding
    • The multi-hop neighbor information of the node.

Model Architecture


  • Automatic proxy evaluation is a better method to select proper models for a new dataset. However, the extremely limited time budget does not allow online model selection. For a trade-off of accuracy and speed, we offline evaluate many models and empirically find that GCN, GAT, GraphSAGE, and TAGConv can get robust and good results on the 5 public dataset and 5 feedback datasets. Thus we use them for ensemble in this code. One can get better results using proxy evaluation.
  • We design different network structures for directed graph and undirected graph, sparse graph and dense graph, graph with node features and graph without node features.

Training Procedure


  • Search learning rate
    • lr_list = [0.05, 0.03, 0.01, 0.0075, 0.005, 0.003, 0.001, 0.0005]
    • Select the optimal learning rate of each model in this data set. After 16 rounds of training, choose the learning rate which get lowest loss(average of epoch 14th, 15th and 16th) in the model.
  • Estimate running time
    • By running the model, estimating the model initialization time and training time for each epoch.
    • The model training epochs are determined according to remaining time and running time of the model.
  • Training and validation
    • The difference of training epochs will lead to the big difference of model effect. It is very easy to overfit for the graph with only node ID information and no original features. So we adopt cross validation and early stopping, which makes the model more robust.
    • training with the following parameters:
      • Learning rate = best_lr
      • Loss: NLL Loss
      • Optimizer: Adam

Reproducibility


  • Requirement
    • Python==3.6
    • torch==1.4.0
    • torch-geometric==1.3.2
    • numpy==1.18.1
    • pandas==1.0.1
    • scikit-learn==0.19.1
  • Training
    • Run ingestion.py.

Reference


[1] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
[2] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv preprint arXiv:1710.10903, 2017.
[3] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs[C]//Advances in neural information processing systems. 2017: 1024-1034.
[4] Du J, Zhang S, Wu G, et al. Topology adaptive graph convolutional networks[J]. arXiv preprint arXiv:1710.10370, 2017.

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022