LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

Overview

LaneDet

Introduction

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

demo image

Table of Contents

Benchmark and model zoo

Supported backbones:

  • ResNet
  • ERFNet
  • VGG
  • DLA (comming soon)

Supported detectors:

Installation

Clone this repository

git clone https://github.com/turoad/lanedet.git

We call this directory as $LANEDET_ROOT

Create a conda virtual environment and activate it (conda is optional)

conda create -n lanedet python=3.8 -y
conda activate lanedet

Install dependencies

# Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

# Or you can install via pip
pip install torch torchvision

# Install python packages
python setup.py build develop

Data preparation

CULane

Download CULane. Then extract them to $CULANEROOT. Create link to data directory.

cd $RESA_ROOT
mkdir -p data
ln -s $CULANEROOT data/CULane

For CULane, you should have structure like this:

$CULANEROOT/driver_xx_xxframe    # data folders x6
$CULANEROOT/laneseg_label_w16    # lane segmentation labels
$CULANEROOT/list                 # data lists

Tusimple

Download Tusimple. Then extract them to $TUSIMPLEROOT. Create link to data directory.

cd $RESA_ROOT
mkdir -p data
ln -s $TUSIMPLEROOT data/tusimple

For Tusimple, you should have structure like this:

$TUSIMPLEROOT/clips # data folders
$TUSIMPLEROOT/lable_data_xxxx.json # label json file x4
$TUSIMPLEROOT/test_tasks_0627.json # test tasks json file
$TUSIMPLEROOT/test_label.json # test label json file

For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

python tools/generate_seg_tusimple.py --root $TUSIMPLEROOT
# this will generate seg_label directory

Getting Started

Training

For training, run

python main.py [configs/path_to_your_config] --gpus [gpu_ids]

For example, run

python main.py configs/resa/resa50_culane.py --gpus 0 1 2 3

Testing

For testing, run

python main.py [configs/path_to_your_config] --validate --load_from [path_to_your_model] [gpu_num]

For example, run

python main.py configs/resa/resa50_culane.py --validate --load_from culane_resnet50.pth --gpus 0 1 2 3

Currently, this code can output the visualization result when testing, just add --view. We will get the visualization result in work_dirs/xxx/xxx/visualization.

For example, run

python main.py configs/resa/resa50_culane.py --validate --load_from culane_resnet50.pth --gpus 0 --view

Contributing

We appreciate all contributions to improve LaneDet. Any pull requests or issues are welcomed.

Licenses

This project is released under the Apache 2.0 license.

Acknowledgement

Comments
  • How can I properly change the input image size on CondLane?

    How can I properly change the input image size on CondLane?

    Currently I'm detecting lanes using tools/detect.py.

    For Condlane inference, I changed this

    batch_size=1 # from 8 (for condlane inference)
    

    And tried these configs for FHD input image

    img_height = 1080 # from 320
    img_width = 1920 # from 800
    
    ori_img_h = 1080 # from 590
    ori_img_w = 1920 # from 1640
    
    crop_bbox = [0,540,1920,1080] # from [0, 270, 1640, 590]
    

    Changing img_scale = (800,320) results

    The size of tensor a must match the size of tensor b at non-singleton dimension 3
    

    How can I properly change the input image size (ex. FHD) on CondLane config file?

    opened by parkjbdev 20
  • curvature estimation

    curvature estimation

    Hello, I would like to know if there is any way to get real-time lane detection and curvature detection using deep learning. I have seen traditional computer vision algorithms but I am looking for a Deep Learning model that could help me out with this. Any suggestions will be very helpful. Thanks in advance.

    opened by k-nayak 9
  • Really bad inference results

    Really bad inference results

    The inference outputs from the model are really bad even for very easy images.

    1. Using Laneatt_Res18_Culane straight-lines2-laneatt-res18

    2. Using SCNN_Res50_Culane straight-lines2-scnn-res50

    Any idea why this is happening? I've just done normal inference without any changes.

    opened by sowmen 9
  • ImportError: connot import name 'nms_impl' form partially initialized module 'lanedet.ops' (most likely due to a circular improt)o)

    ImportError: connot import name 'nms_impl' form partially initialized module 'lanedet.ops' (most likely due to a circular improt)o)

    When I run: python tools/detect.py configs/resa/resa34_culane.py --img images --load_from resa_r34_culane.pth --savedir ./vis Traceback (most recent call last): File "D:/XXX/XXX/XXX/lanedet-main/tools/detect.py", line 8, in from lanedet.datasets.process import Process File "D:\XXX\XXX\XXX\lanedet-main\lanedet_init_.py", line 1, in from .ops import * File "D:\XXX\XXX\XXX\lanedet-main\lanedet\ops_init_.py", line 1, in from .nms import nms File "D:\XXX\XXX\XXX\lanedet-main\lanedet\ops\nms.py", line 29, in from . import nms_impl ImportError: cannot import name 'nms_impl' from partially initialized module 'lanedet.ops' (most likely due to a circular import) (D:\XXX\XXX\XXX\lanedet-main\lanedet\ops_init_.py)

    opened by readerrubic 8
  • custom image size for resa !

    custom image size for resa !

    Hello,

    I have tried testing with the CULane dataset with rsea and it is working well with the example video_example/05081544_0305/
    With the following image configuration: img_height = 288 img_width = 800 cut_height = 240 ori_img_h = 590 ori_img_w = 1640

    05081544_0305-000073

    But with custom image of configurations: img_height = 288 img_width = 800 cut_height = 240 ori_img_h = 1208 // 590 ori_img_w = 1920 //1640

    With above parameters: custom image 05081544_0305-000001

    With defaut parameters: custom image 05081544_0305-000001

    Could you please assist me which params needs to be tuned.

    Appreciate any response.

    Regards, Ajay

    opened by ajay1606 7
  • Can't convert the model to onnx

    Can't convert the model to onnx

    `sample_input = torch.rand((32, 3, 3, 3))

    torch.onnx.export( net1.module, # PyTorch Model sample_input, # Input tensor '/content/drive/MyDrive/MobileNetV2-model-onnx.onnx', # Output file (eg. 'output_model.onnx') opset_version = 12, # Operator support version input_names = ['input'], # Input tensor name (arbitary) output_names = ['output'] # Output tensor name (arbitary) )`

    Got this Error:

    TypeError Traceback (most recent call last) in () 5 opset_version=12, # Operator support version 6 input_names=['input'], # Input tensor name (arbitary) ----> 7 output_names=['output'] # Output tensor name (arbitary) 8 )

     21     def forward(self, batch):
     22         output = {}
    

    ---> 23 fea = self.backbone(batch['img']) 24 25 if self.aggregator:

    TypeError: new(): invalid data type 'str'

    enhancement 
    opened by AbdulFMS 6
  • HELP! A circular import error message appears in nms.py

    HELP! A circular import error message appears in nms.py

    from . import nms_impl ImportError: cannot import name 'nms_impl' from partially initialized module 'la nedet.ops' (most likely due to a circular import) (D:\lanedet-main\lanedet\ops_ init_.py)

    opened by 13xyz7 6
  • Unable to find model file

    Unable to find model file

    Hello, Thank you so much for sharing a very much useful repository.

    I have followed the step by step instructions given, and have downloaded all the datasets as mentioned in the below image

    image

    Training: python main.py configs/resa/resa50_culane.py --gpus 0

    After running the above command, i was able to see following window: image

    But i couldn't find any model file such as culane_resnet50.pth ,resa_r34_culane.pth !! As it mentioned in the example run case.

    Alternatively, is it possible to share the pre-trained model file?

    As I am a beginner, I greatly appreciate your understanding and kind response.

    Regards, Ajay

    opened by ajay1606 5
  • TypeError: expected string or bytes-like object

    TypeError: expected string or bytes-like object

    python setup.py build develop

    File "/home/zzj/anaconda3/envs/Lanedet/lib/python3.8/site-packages/pkg_resources/_vendor/packaging/version.py", line 275, in init match = self._regex.search(version) TypeError: expected string or bytes-like object

    ubuntu20.04 what can i do?

    opened by hzzzzjzyq 5
  • Error

    Error

    if don't modify (from .nms import nms) from lanedet/ops/init.py to (from . import *) there will be an error. and if don't modify (from . import nms_impl) from lanedet/ops/nms.py to (from . import *) there will be an error. And when run inference, there is no lanedet directory in the tools directory, resulting in module error from lanedet/tools/detect.py line 8~12. Is there any other way to remove the error?

    opened by gui-hoon 5
  • Mobilenetv2 for condlane got error.

    Mobilenetv2 for condlane got error.

    Hey @Turoad, thanks for your work, it's very useful. I recently customized to train condlane with mobilenetv2 backbone but got this error!!

    Traceback (most recent call last):
      File "main.py", line 65, in <module>
        main()
      File "main.py", line 35, in main
        runner.train()
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/engine/runner.py", line 94, in train
        self.train_epoch(epoch, train_loader)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/engine/runner.py", line 67, in train_epoch
        output = self.net(data)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/mmcv/parallel/data_parallel.py", line 42, in forward
        return super().forward(*inputs, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward
        return self.module(*inputs[0], **kwargs[0])
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/models/nets/detector.py", line 29, in forward
        fea = self.neck(fea)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/models/necks/fpn.py", line 113, in forward
        assert len(inputs) >= len(self.in_channels)
    AssertionError
    

    Can you help me clarify it? This is my config

    net = dict(
        type='Detector',
    )
    
    backbone = dict(
        type='MobileNet',
        net='MobileNetV2',
        pretrained=True,
        # replace_stride_with_dilation=[False, False, False],
        out_conv=False,
        # in_channels=[64, 128, 256, 512]
    )
    
    featuremap_out_channel = 1280
    featuremap_out_stride = 32 
    
    sample_y = range(590, 270, -8)
    
    batch_size = 8
    aggregator = dict(
        type='TransConvEncoderModule',
        in_dim=1280,
        attn_in_dims=[1280, 64],
        attn_out_dims=[64, 64],
        strides=[1, 1],
        ratios=[4, 4],
        pos_shape=(batch_size, 10, 25),
    )
    
    neck=dict(
        type='FPN',
        in_channels=[64, 128, 256, 64],
        out_channels=64,
        num_outs=4,
        #trans_idx=-1,
    )
    
    loss_weights=dict(
            hm_weight=1,
            kps_weight=0.4,
            row_weight=1.,
            range_weight=1.,
        )
    
    num_lane_classes=1
    heads=dict(
        type='CondLaneHead',
        heads=dict(hm=num_lane_classes),
        in_channels=(64, ),
        num_classes=num_lane_classes,
        head_channels=64,
        head_layers=1,
        disable_coords=False,
        branch_in_channels=64,
        branch_channels=64,
        branch_out_channels=64,
        reg_branch_channels=64,
        branch_num_conv=1,
        hm_idx=2,
        mask_idx=0,
        compute_locations_pre=True,
        location_configs=dict(size=(batch_size, 1, 80, 200), device='cuda:0')
    )
    
    optimizer = dict(type='AdamW', lr=3e-4, betas=(0.9, 0.999), eps=1e-8)
    optimizer = dict(type='SGD', lr=3e-3)
    
    epochs = 40
    total_iter = (88880 // batch_size) * epochs
    total_iter = (3688 // batch_size) * epochs
    
    import math
    scheduler = dict(
        type = 'MultiStepLR',
        milestones=[15, 25, 35],
        gamma=0.1
    )
    
    seg_loss_weight = 1.0
    eval_ep = 1
    save_ep = 1 
    
    img_norm = dict(
        mean=[75.3, 76.6, 77.6],
        std=[50.5, 53.8, 54.3]
    )
    
    img_height = 320 
    img_width = 800
    cut_height = 0 
    ori_img_h = 590
    ori_img_w = 1640
    
    mask_down_scale = 4
    hm_down_scale = 16
    num_lane_classes = 1
    line_width = 3
    radius = 6
    nms_thr = 4
    img_scale = (800, 320)
    crop_bbox = [0, 270, 1640, 590]
    mask_size = (1, 80, 200)
    
    train_process = [
        dict(type='Alaug',
        transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
        dict(
            type='Crop',
            x_min=crop_bbox[0],
            x_max=crop_bbox[2],
            y_min=crop_bbox[1],
            y_max=crop_bbox[3],
            p=1),
        dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),
        dict(
            type='OneOf',
            transforms=[
                dict(
                    type='RGBShift',
                    r_shift_limit=10,
                    g_shift_limit=10,
                    b_shift_limit=10,
                    p=1.0),
                dict(
                    type='HueSaturationValue',
                    hue_shift_limit=(-10, 10),
                    sat_shift_limit=(-15, 15),
                    val_shift_limit=(-10, 10),
                    p=1.0),
            ],
            p=0.7),
        dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
        dict(
            type='OneOf',
            transforms=[
                dict(type='Blur', blur_limit=3, p=1.0),
                dict(type='MedianBlur', blur_limit=3, p=1.0)
            ],
            p=0.2),
        dict(type='RandomBrightness', limit=0.2, p=0.6),
        dict(
            type='ShiftScaleRotate',
            shift_limit=0.1,
            scale_limit=(-0.2, 0.2),
            rotate_limit=10,
            border_mode=0,
            p=0.6),
        dict(
            type='RandomResizedCrop',
            height=img_scale[1],
            width=img_scale[0],
            scale=(0.8, 1.2),
            ratio=(1.7, 2.7),
            p=0.6),
        dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),]
        ),
        dict(type='CollectLane',
            down_scale=mask_down_scale,
            hm_down_scale=hm_down_scale,
            max_mask_sample=5,
            line_width=line_width,
            radius=radius,
            keys=['img', 'gt_hm'],
            meta_keys=[
                'gt_masks', 'mask_shape', 'hm_shape',
                'down_scale', 'hm_down_scale', 'gt_points'
            ]
        ),
        #dict(type='Resize', size=(img_width, img_height)),
        dict(type='Normalize', img_norm=img_norm),
        dict(type='ToTensor', keys=['img', 'gt_hm'], collect_keys=['img_metas']),
    ]
    
    
    val_process = [
        dict(type='Alaug',
            transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
                dict(type='Crop',
                x_min=crop_bbox[0],
                x_max=crop_bbox[2],
                y_min=crop_bbox[1],
                y_max=crop_bbox[3],
                p=1),
            dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1)]
        ),
        #dict(type='Resize', size=(img_width, img_height)),
        dict(type='Normalize', img_norm=img_norm),
        dict(type='ToTensor', keys=['img']),
    ]
    
    # dataset_path = './data/CULane'
    dataset_path = './data/Merge_data'
    # val_path = './data/CULane'
    dataset = dict(
        train=dict(
            type='CULane',
            data_root=dataset_path,
            split='train',
            processes=train_process,
        ),
        val=dict(
            type='CULane',
            data_root=dataset_path,
            split='test',
            processes=val_process,
        ),
        test=dict(
            type='CULane',
            data_root=dataset_path,
            split='test',
            processes=val_process,
        )
    )
    
    
    workers = 6
    log_interval = 100
    lr_update_by_epoch=True
    

    Thank you so much

    opened by luan1412167 4
  • CondLane如何修改检测的车道线数量?

    CondLane如何修改检测的车道线数量?

    使用测试kaist数据集测试[CondLane],最多只能检测出3条车道线,很明显的车道检测不出来,请问是限制了检测车道线数量了吗,在那里可以配置? https://github.com/Turoad/lanedet/issues/58#issuecomment-1131143127 按照此处的配置方法似乎不管用。 1559193232373910975

    opened by w-jinkui 0
  • PermissionError: [Errno 13] Permission denied: 'C:\\Users\\L00653~1\\AppData\\Local\\Temp\\tmphpklern8\\tmpkydalnxp.py'

    PermissionError: [Errno 13] Permission denied: 'C:\\Users\\L00653~1\\AppData\\Local\\Temp\\tmphpklern8\\tmpkydalnxp.py'

    Traceback (most recent call last): File "tools/detect.py", line 86, in process(args) File "tools/detect.py", line 68, in process cfg = Config.fromfile(args.config) File "d:\lanedet\lanedet\utils\config.py", line 180, in fromfile cfg_dict, cfg_text = Config._file2dict(filename) File "d:\lanedet\lanedet\utils\config.py", line 105, in _file2dict shutil.copyfile(filename, File "C:\Users\l00653465\Anaconda3\envs\lanedet\lib\shutil.py", line 264, in copyfile with open(src, 'rb') as fsrc, open(dst, 'wb') as fdst: PermissionError: [Errno 13] Permission denied: 'C:\Users\L00653~1\AppData\Local\Temp\tmphpklern8\tmpkydalnxp.py'

    在进行训练和测试的时候都会报这个错

    opened by Sober-xz 1
  • KeyError:  Unable to find

    KeyError: Unable to find "net" key in the trained model from detect.py

    Hi Guys,

    I am using this project on conda env with gpu configured. I was trying to just run the inference files first to try it out, but I get the following error:

    Traceback (most recent call last): File "c:\CULane\lanedet\tools\detect.py", line 86, in process(args) File "c:\CULane\lanedet\tools\detect.py", line 72, in process detect = Detect(cfg) File "c:\CULane\lanedet\tools\detect.py", line 24, in init load_network(self.net, self.cfg.load_from) File "c:\culane\lanedet\lanedet\utils\net_utils.py", line 48, in load_network net.load_state_dict(pretrained_model['net'], strict=True) KeyError: 'net'

    I have used following command: $ python detect.py' 'lanedet/configs/resa/resa34_culane.py' '--img' 'image\' '--load_from' 'C:\Users\blackbug\.cache\torch\hub\checkpoints\resnet34-333f7ec4.pth' '--savedir' './vis'

    I tried to look at the model loaded from the downloaded resnet model file; it looks valid with all the trained layers, just "net" isnt part of the dictionary. Any help is appreciated! Thank you!

    opened by kkarnatak 0
Owner
TuZheng
TuZheng
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022