Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Related tags

Deep Learninghgiyt
Overview

Introduction

This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models". Feel free to use this code to re-run our experiments or run new experiments on your own data.

Setup

General  
  1. Clone this repo
git clone [email protected]:Adapter-Hub/hgiyt.git
  1. Install PyTorch (we used v1.7.1 - code may not work as expected for older or newer versions) in a new Python (>=3.6) virtual environment
pip install torch===1.7.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html
  1. Initialize the submodules
git submodule update --init --recursive
  1. Install the adapter-transformer library and dependencies
pip install lib/adapter-transformers
pip install -r requirements.txt
Pretraining  
  1. Install Nvidia Apex for automatic mixed-precision (amp / fp16) training
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  1. Install wiki-bert-pipeline dependencies
pip install -r lib/wiki-bert-pipeline/requirements.txt
Language-specific prerequisites  

To use the Japanese monolingual model, install the morphological parser MeCab with the mecab-ipadic-20070801 dictionary:

  1. Install gdown for easy downloads from Google Drive
pip install gdown
  1. Download and install MeCab
gdown https://drive.google.com/uc?id=0B4y35FiV1wh7cENtOXlicTFaRUE
tar -xvzf mecab-0.996.tar.gz
cd mecab-0.996
./configure 
make
make check
sudo make install
  1. Download and install the mecab-ipadic-20070801 dictionary
gdown https://drive.google.com/uc?id=0B4y35FiV1wh7MWVlSDBCSXZMTXM
tar -xvzf mecab-ipadic-2.7.0-20070801.tar.gz
cd mecab-ipadic-2.7.0-20070801
./configure --with-charset=utf8
make
sudo make install

Data

We unfortunately cannot host the datasets used in our paper in this repo. However, we provide download links (wherever possible) and instructions or scripts to preprocess the data for finetuning and for pretraining.

Experiments

Our scripts are largely borrowed from the transformers and adapter-transformers libraries. For pretrained models and adapters we rely on the ModelHub and AdapterHub. However, even if you haven't used them before, running our scripts should be pretty straightforward :).

We provide instructions on how to execute our finetuning scripts here and our pretraining script here.

Models

Our pretrained models are also available in the ModelHub: https://huggingface.co/hgiyt. Feel free to finetune them with our scripts or use them in your own code.

Citation & Authors

@inproceedings{rust-etal-2021-good,
      title     = {How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models}, 
      author    = {Phillip Rust and Jonas Pfeiffer and Ivan Vuli{\'c} and Sebastian Ruder and Iryna Gurevych},
      year      = {2021},
      booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational
                  Linguistics, {ACL} 2021, Online, August 1-6, 2021},
      url       = {https://arxiv.org/abs/2012.15613},
      pages     = {3118--3135}
}

Contact Person: Phillip Rust, [email protected]

Don't hesitate to send us an e-mail or report an issue if something is broken (and it shouldn't be) or if you have further questions.

This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication.

A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022