This repo will contain code to reproduce and build upon understanding transfer learning

Overview

What is being transferred in transfer learning?

This repo contains the code for the following paper:

Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*. What is being transferred in transfer learning?. *equal contribution. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Disclaimer: this is not an officially supported Google product.

Setup

Library dependencies

This code has the following dependencies

  • pytorch (1.4.0 is tested)
  • gin-config
  • tqdm
  • wget (the python package)

GPUs are needed to run most of the experiments.

Data

CheXpert data (the train and valid folders) needs to be placed in /mnt/data/CheXpert-v1.0-img224. If your data is in a different place, you can specify the data.image_path parameter (see configs/p100_chexpert.py). We pre-resized all the CheXpert images to reduce the burden of data pre-processing using the following script:

'" ../$NEWDIR/{} cd .. ">
#!/bin/bash

NEWDIR=CheXpert-v1.0-img224
mkdir -p $NEWDIR/{train,valid}

cd CheXpert-v1.0

echo "Prepare directory structure..."
find . -type d | parallel mkdir -p ../$NEWDIR/{}

echo "Resize all images to have at least 224 pixels on each side..."
find . -name "*.jpg" | parallel convert {} -resize "'224^>'" ../$NEWDIR/{}

cd ..

The DomainNet data will be automatically downloaded from the Internet upon first run. By default, it will download to /mnt/data, which can be changed with the data_dir config (see configs/p100_domain_net.py).

Common Experiments

Training jobs

CheXpert training from random init. We use 2 Nvidia V100 GPUs for CheXpert training. If you run into out-of-memory error, you can try to reduce the batch size.

CUDA_VISIBLE_DEVICES=0,1 python chexpert_train.py -k train/chexpert/fixup_resnet50_nzfc/randinit-lr0.1-bs256

CheXpert finetuning from ImageNet pre-trained checkpoint. The code tries to load the ImageNet pre-trained chexpoint from /mnt/data/logs/imagenet-lr01/ckpt-E090.pth.tar. Or you can customize the path to checkpoint (see configs/p100_chexpert.py).

CUDA_VISIBLE_DEVICES=0,1 python chexpert_train.py -k train/chexpert/fixup_resnet50_nzfc/finetune-lr0.02-bs256

Similarly, DomainNet training can be executed using the script imagenet_train.py (replace real with clipart and quickdraw to run on different domains).

# randinit
CUDA_VISIBLE_DEVICES=0 python imagenet_train.py -k train/DomainNet_real/fixup_resnet50_nzfc/randinit-lr0.1-MstepLR

# finetune
CUDA_VISIBLE_DEVICES=0 python imagenet_train.py -k train/DomainNet_real/fixup_resnet50_nzfc/finetune-lr0.02-MstepLR

Training with shuffled blocks

The training jobs with block-shuffled images are defined in configs/p200_pix_shuffle.py. Run

python -m configs pix_shuffle

To see the keys of all the training jobs with pixel shuffling. Similarly,

python -m configs blk7_shuffle

list all the jobs with 7x7 block-shuffled images. You can run any of those jobs using the -k command line argument. For example:

CUDA_VISIBLE_DEVICES=0 python imagenet_train.py \
    -k blk7_shuffle/DomainNet_quickdraw/fixup_resnet50_nzfc_noaug/randinit-lr0.1-MstepLR/seed0

Finetuning from different pre-training checkpoints

The config file configs/p200_finetune_ckpt.py defines training jobs that finetune from different ImageNet pre-training checkpoints along the pre-training optimization trajectory.

Linear interpolation between checkpoints (performance barrier)

The script ckpt_interpolation.py performs the experiment of linearly interpolating between different solutions. The file is self-contained. You can edit the file directly to specify which combinations of checkpoints are to be used. The command line argument -a compute and -a plot can be used to switch between doing the computation and making the plots based on computed results.

General Documentation

This codebase uses gin-config to customize the behavior of the program, and allows us to easily generate a large number of similar configurations with Python loops. This is especially useful for hyper-parameter sweeps.

Running a job

A script mainly takes a config key in the commandline, and it will pull the detailed configurations according to this key from the pre-defined configs. For example:

python3 imagenet_train.py -k train/cifar10/fixup_resnet50/finetune-lr0.02-MstepLR

Query pre-defined configs

You can list all the pre-defined config keys matching a given regex with the following command:

python3 -m configs 

For example:

$ python3 -m configs cifar10
2 configs found ====== with regex: cifar10
    0) train/cifar10/fixup_resnet50/randinit-lr0.1-MstepLR
    1) train/cifar10/fixup_resnet50/finetune-lr0.02-MstepLR

Defining new configs

All the configs are in the directory configs, with the naming convention pXXX_YYY.py. Here XXX are digits, which allows ordering between configs (so when defining configs we can reference and extend previously defined configs).

To add a new config file:

  1. create pXXX_YYY.py file.
  2. edit __init__.py to import this file.
  3. in the newly added file, define functions to registery new configs. All the functions with the name register_blah will be automatically called.

Customing new functions

To customize the behavior of a new function, make that function gin configurable by

@gin.configurable('config_name')
def my_func(arg1=gin.REQUIRED, arg2=0):
  # blah

Then in the pre-defined config files, you can specify the values by

spec['gin']['config_name.arg1'] = # whatever python objects
spec['gin']['config_name.arg2'] = 2

See gin-config for more details.

Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022