This repo will contain code to reproduce and build upon understanding transfer learning

Overview

What is being transferred in transfer learning?

This repo contains the code for the following paper:

Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*. What is being transferred in transfer learning?. *equal contribution. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Disclaimer: this is not an officially supported Google product.

Setup

Library dependencies

This code has the following dependencies

  • pytorch (1.4.0 is tested)
  • gin-config
  • tqdm
  • wget (the python package)

GPUs are needed to run most of the experiments.

Data

CheXpert data (the train and valid folders) needs to be placed in /mnt/data/CheXpert-v1.0-img224. If your data is in a different place, you can specify the data.image_path parameter (see configs/p100_chexpert.py). We pre-resized all the CheXpert images to reduce the burden of data pre-processing using the following script:

'" ../$NEWDIR/{} cd .. ">
#!/bin/bash

NEWDIR=CheXpert-v1.0-img224
mkdir -p $NEWDIR/{train,valid}

cd CheXpert-v1.0

echo "Prepare directory structure..."
find . -type d | parallel mkdir -p ../$NEWDIR/{}

echo "Resize all images to have at least 224 pixels on each side..."
find . -name "*.jpg" | parallel convert {} -resize "'224^>'" ../$NEWDIR/{}

cd ..

The DomainNet data will be automatically downloaded from the Internet upon first run. By default, it will download to /mnt/data, which can be changed with the data_dir config (see configs/p100_domain_net.py).

Common Experiments

Training jobs

CheXpert training from random init. We use 2 Nvidia V100 GPUs for CheXpert training. If you run into out-of-memory error, you can try to reduce the batch size.

CUDA_VISIBLE_DEVICES=0,1 python chexpert_train.py -k train/chexpert/fixup_resnet50_nzfc/randinit-lr0.1-bs256

CheXpert finetuning from ImageNet pre-trained checkpoint. The code tries to load the ImageNet pre-trained chexpoint from /mnt/data/logs/imagenet-lr01/ckpt-E090.pth.tar. Or you can customize the path to checkpoint (see configs/p100_chexpert.py).

CUDA_VISIBLE_DEVICES=0,1 python chexpert_train.py -k train/chexpert/fixup_resnet50_nzfc/finetune-lr0.02-bs256

Similarly, DomainNet training can be executed using the script imagenet_train.py (replace real with clipart and quickdraw to run on different domains).

# randinit
CUDA_VISIBLE_DEVICES=0 python imagenet_train.py -k train/DomainNet_real/fixup_resnet50_nzfc/randinit-lr0.1-MstepLR

# finetune
CUDA_VISIBLE_DEVICES=0 python imagenet_train.py -k train/DomainNet_real/fixup_resnet50_nzfc/finetune-lr0.02-MstepLR

Training with shuffled blocks

The training jobs with block-shuffled images are defined in configs/p200_pix_shuffle.py. Run

python -m configs pix_shuffle

To see the keys of all the training jobs with pixel shuffling. Similarly,

python -m configs blk7_shuffle

list all the jobs with 7x7 block-shuffled images. You can run any of those jobs using the -k command line argument. For example:

CUDA_VISIBLE_DEVICES=0 python imagenet_train.py \
    -k blk7_shuffle/DomainNet_quickdraw/fixup_resnet50_nzfc_noaug/randinit-lr0.1-MstepLR/seed0

Finetuning from different pre-training checkpoints

The config file configs/p200_finetune_ckpt.py defines training jobs that finetune from different ImageNet pre-training checkpoints along the pre-training optimization trajectory.

Linear interpolation between checkpoints (performance barrier)

The script ckpt_interpolation.py performs the experiment of linearly interpolating between different solutions. The file is self-contained. You can edit the file directly to specify which combinations of checkpoints are to be used. The command line argument -a compute and -a plot can be used to switch between doing the computation and making the plots based on computed results.

General Documentation

This codebase uses gin-config to customize the behavior of the program, and allows us to easily generate a large number of similar configurations with Python loops. This is especially useful for hyper-parameter sweeps.

Running a job

A script mainly takes a config key in the commandline, and it will pull the detailed configurations according to this key from the pre-defined configs. For example:

python3 imagenet_train.py -k train/cifar10/fixup_resnet50/finetune-lr0.02-MstepLR

Query pre-defined configs

You can list all the pre-defined config keys matching a given regex with the following command:

python3 -m configs 

For example:

$ python3 -m configs cifar10
2 configs found ====== with regex: cifar10
    0) train/cifar10/fixup_resnet50/randinit-lr0.1-MstepLR
    1) train/cifar10/fixup_resnet50/finetune-lr0.02-MstepLR

Defining new configs

All the configs are in the directory configs, with the naming convention pXXX_YYY.py. Here XXX are digits, which allows ordering between configs (so when defining configs we can reference and extend previously defined configs).

To add a new config file:

  1. create pXXX_YYY.py file.
  2. edit __init__.py to import this file.
  3. in the newly added file, define functions to registery new configs. All the functions with the name register_blah will be automatically called.

Customing new functions

To customize the behavior of a new function, make that function gin configurable by

@gin.configurable('config_name')
def my_func(arg1=gin.REQUIRED, arg2=0):
  # blah

Then in the pre-defined config files, you can specify the values by

spec['gin']['config_name.arg1'] = # whatever python objects
spec['gin']['config_name.arg2'] = 2

See gin-config for more details.

alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Namish Khanna 40 Oct 11, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023