PyTorch implementation of MulMON

Overview

MulMON

This repository contains a PyTorch implementation of the paper:
Learning Object-Centric Representations of Multi-object Scenes from Multiple Views

Li Nanbo, Cian Eastwood, Robert B. Fisher
NeurIPS 2020 (Spotlight)

Working examples

Check our video presentation for more: https://youtu.be/Og2ic2L77Pw.

Requirements

Hardware:

  • GPU. Currently, at least one GPU device is required to run this code, however, we will consider adding CPU demo code in the future.
  • Disk space: we do NOT have any hard requirement for the disk space, this is totally data-dependent. To use all the datasets we provide, you will need ~9GB disk space. However, it is not necessary to use all of our datasets (or even our datasets), see Data section for more details.

Python Environement:

  1. We use Anaconda to manage our python environment. Check conda installation guide here: https://docs.anaconda.com/anaconda/install/linux/.

  2. Open a new terminal, direct to the MulMON directory:

cd <YOUR-PATH-TO-MulMON>/MulMON/

create a new conda environment called "mulmon" and then activate it:

conda env create -f ./conda-env-spec.yml  
conda activate mulmon
  1. Install a gpu-supported PyTorch (tested with PyTorch 1.1, 1.2 and 1.7). It is very likely that there exists a PyTorch installer that is compatible with both your CUDA and this code. Go find it on PyTorch official site, and install it with one line of command.

  2. Install additional packages:

pip install tensorboard  
pip install scikit-image

If pytorch <=1.2 is used, you will also need to execute: pip install tensorboardX and import it in the ./trainer/base_trainer.py file. This can be done by commenting the 4th line AND uncommenting the 5th line of that file.

Data

  • Data structure (important):
    We use a data structure as follows:

    <YOUR-PATH>                                          
        ├── ...
        └── mulmon_datasets
              ├── clevr                                   # place your own CLEVR-MV under this directory if you go the fun way
              │    ├── ...
              │    ├── clevr_mv            
              │    │    └── ... (omit)                    # see clevr_<xxx> for subdirectory details
              │    ├── clevr_aug           
              │    │    └── ... (omit)                    # see clevr_<xxx> for subdirectory details
              │    └── clevr_<xxx>
              │         ├── ...
              │         ├── data                          # contains a list of scene files
              │         │    ├── CLEVR_new_#.npy          # one .npy --> one scene sample
              │         │    ├── CLEVR_new_#.npy       
              │         │    └── ...
              │         ├── clevr_<xxx>_train.json        # meta information of the training scenes
              │         └── clevr_<xxx>_test.json         # meta information of the testing scenes  
              └── GQN  
                   ├── ...
                   └── gqn-jaco                 
                        ├── gqn_jaco_train.h5
                        └── gqn_jaco_test.h5
    

    We recommend one to get the necessary data folders ready before downloading/generating the data files:

    mkdir <YOUR-PATH>/mulmon_datasets  
    mkdir <YOUR-PATH>/mulmon_datasets/clevr  
    mkdir <YOUR-PATH>/mulmon_datasets/GQN
    
  • Get Datasets

    • Easy way:
      Download our datasets:

      • clevr_mv.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/clevr/ directory (~1.8GB when extracted).
      • clevr_aug.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/clevr/ directory (~3.8GB when extracted).
      • gqn_jaco.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/GQN/ directory (~3.2GB when extracted).

      and extract them in places. For example, the command for extracting clevr_mv.tar.gz:

      tar -zxvf <YOUR-PATH>/mulmon_datasets/clevr/clevr_mv.tar.gz -C <YOUR-PATH>/mulmon_datasets/clevr/
      

      Note that: 1) we used only a subset of the DeepMind GQN-Jaco dataset, more available at deepmind/gqn-datasets, and 2) the published clevr_aug dataset differs slightly from the CLE-Aug used in the paper---we added more shapes (such as dolphins) into the dataset to make the dataset more interesting (also more complex).

    • Fun way :
      Customise your own multi-view CLEVR data. (available soon...)

Pre-trained models

Download the pretrained models (← click) and place it under `MulMON/', i.e. the root directory of this repository, then extract it by executing: tar -zxvf ./logs.tar.gz. Note that some of them are slightly under-trained, so one could train them further to achieve better results (How to train?).

Usage

Configure data path
To run the code, the data path, i.e. the <YOUR-PATH> in a script, needs to be correctly configured. For example, we store the MulMON dataset folder mulmon_datasets in ../myDatasets/, to train a MulMON on GQN-Jaco dataset using a single GPU, the 4th line of the ./scripts/train_jaco.sh script should look like: data_path=../myDatasets/mulmon_datasets/GQN.

  • Demo (Environment Test)
    Before running the below code, make sure the pretrained models are downloaded and saved first:

    . scripts/demo.sh  
    

    Check ./logs folder for the generated demos.

    • Notes for disentanglement demos: we randomly pick one object for each scene to create the disentanglement demo, so for scene samples where an empty object slot is picked, you won't see any object manipulation effect in the corresponding gifs (especially for the GQN-Jaco scenes). To create a demo like the shown one, one needs to specify (hard-coding) an object slot of interest and traverse informative latent dimensions (as some dimensions are redundant---capture no object property).
  • Train

    • On a single gpu (e.g. using the GQN-Jaco dataset):
    . scripts/train_jaco.sh  
    
    • On multiple GPUs (e.g. using the GQN-Jaco dataset):
    . scripts/train_jaco_parallel.sh  
    
    • To resume training from a stopped session, i.e. saved weights checkpoint-epoch<#number>.pth, simply append a flag --resume_epoch <#number> to one of the flags in the script files.
      For example, to resume previous training (saved as checkpoint-epoch2000.pth) on GQN-Jaco data, we just need to reconfigure the 10th line of the ./scripts/train_jaco.sh as:
      --input_dir ${data_path} --output_dir ${log_path} --resume_epoch 2000 \.
  • Evaluation

    • On a single gpu (e.g. using the Clevr_MV dataset):
    . scripts/eval_clevr.sh  
    
    • Here is a list of imporant evaluation settings which one might wants to play with
      --resume_epoch specify a model to evaluate --test_batch how many batches of test data one uses for evaluation.
      --vis_batch how many batches of output one visualises (save) while evaluation. (note: <= --test_batch)
      --analyse_batch how many batches of latent codes one saves for a post analysis, e.g. disentanglement. (note: <= --test_batch)
      --eval_all (boolean) set True for all [--eval_recon, --eval_seg, --eval_qry_obs, --eval_qry_seg] items, one could also use each of the four independently.
      --eval_dist (boolean) save latent codes for disentanglement analysis. (note: not controlled by --eval_all)
    • For the disentanglement evaluation, run the scripts/eval_clevr.sh script with --eval_dist flag set to True and set the --analyse_batch variable (which controls how many scenes of latent codes one wants to analyse) to be greater than 0. This saves the ouptut latent codes and ground-truth information that allows you to conduct disentanglement quantification using the QEDR framework.
    • You might observe that the evaluation results on the CLE-Aug dataset differ form those on the original paper, this is because the CLE-Aug here is slightly different the one we used for the paper (see more details).

Contact

We constantly respond to the raised ''issues'' in terms of running the code. For further inquiries and discussions (e.g. questions about the paper), email: [email protected].

Cite

Please cite our paper if you find this code useful.

@inproceedings{nanbo2020mulmon,
  title={Learning Object-Centric Representations of Multi-Object Scenes from Multiple Views},
  author={Nanbo, Li and Eastwood, Cian and Fisher, Robert B},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}
Owner
NanboLi
PhD Student, University of Edinburgh
NanboLi
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022