PyTorch implementation of MulMON

Overview

MulMON

This repository contains a PyTorch implementation of the paper:
Learning Object-Centric Representations of Multi-object Scenes from Multiple Views

Li Nanbo, Cian Eastwood, Robert B. Fisher
NeurIPS 2020 (Spotlight)

Working examples

Check our video presentation for more: https://youtu.be/Og2ic2L77Pw.

Requirements

Hardware:

  • GPU. Currently, at least one GPU device is required to run this code, however, we will consider adding CPU demo code in the future.
  • Disk space: we do NOT have any hard requirement for the disk space, this is totally data-dependent. To use all the datasets we provide, you will need ~9GB disk space. However, it is not necessary to use all of our datasets (or even our datasets), see Data section for more details.

Python Environement:

  1. We use Anaconda to manage our python environment. Check conda installation guide here: https://docs.anaconda.com/anaconda/install/linux/.

  2. Open a new terminal, direct to the MulMON directory:

cd <YOUR-PATH-TO-MulMON>/MulMON/

create a new conda environment called "mulmon" and then activate it:

conda env create -f ./conda-env-spec.yml  
conda activate mulmon
  1. Install a gpu-supported PyTorch (tested with PyTorch 1.1, 1.2 and 1.7). It is very likely that there exists a PyTorch installer that is compatible with both your CUDA and this code. Go find it on PyTorch official site, and install it with one line of command.

  2. Install additional packages:

pip install tensorboard  
pip install scikit-image

If pytorch <=1.2 is used, you will also need to execute: pip install tensorboardX and import it in the ./trainer/base_trainer.py file. This can be done by commenting the 4th line AND uncommenting the 5th line of that file.

Data

  • Data structure (important):
    We use a data structure as follows:

    <YOUR-PATH>                                          
        ├── ...
        └── mulmon_datasets
              ├── clevr                                   # place your own CLEVR-MV under this directory if you go the fun way
              │    ├── ...
              │    ├── clevr_mv            
              │    │    └── ... (omit)                    # see clevr_<xxx> for subdirectory details
              │    ├── clevr_aug           
              │    │    └── ... (omit)                    # see clevr_<xxx> for subdirectory details
              │    └── clevr_<xxx>
              │         ├── ...
              │         ├── data                          # contains a list of scene files
              │         │    ├── CLEVR_new_#.npy          # one .npy --> one scene sample
              │         │    ├── CLEVR_new_#.npy       
              │         │    └── ...
              │         ├── clevr_<xxx>_train.json        # meta information of the training scenes
              │         └── clevr_<xxx>_test.json         # meta information of the testing scenes  
              └── GQN  
                   ├── ...
                   └── gqn-jaco                 
                        ├── gqn_jaco_train.h5
                        └── gqn_jaco_test.h5
    

    We recommend one to get the necessary data folders ready before downloading/generating the data files:

    mkdir <YOUR-PATH>/mulmon_datasets  
    mkdir <YOUR-PATH>/mulmon_datasets/clevr  
    mkdir <YOUR-PATH>/mulmon_datasets/GQN
    
  • Get Datasets

    • Easy way:
      Download our datasets:

      • clevr_mv.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/clevr/ directory (~1.8GB when extracted).
      • clevr_aug.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/clevr/ directory (~3.8GB when extracted).
      • gqn_jaco.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/GQN/ directory (~3.2GB when extracted).

      and extract them in places. For example, the command for extracting clevr_mv.tar.gz:

      tar -zxvf <YOUR-PATH>/mulmon_datasets/clevr/clevr_mv.tar.gz -C <YOUR-PATH>/mulmon_datasets/clevr/
      

      Note that: 1) we used only a subset of the DeepMind GQN-Jaco dataset, more available at deepmind/gqn-datasets, and 2) the published clevr_aug dataset differs slightly from the CLE-Aug used in the paper---we added more shapes (such as dolphins) into the dataset to make the dataset more interesting (also more complex).

    • Fun way :
      Customise your own multi-view CLEVR data. (available soon...)

Pre-trained models

Download the pretrained models (← click) and place it under `MulMON/', i.e. the root directory of this repository, then extract it by executing: tar -zxvf ./logs.tar.gz. Note that some of them are slightly under-trained, so one could train them further to achieve better results (How to train?).

Usage

Configure data path
To run the code, the data path, i.e. the <YOUR-PATH> in a script, needs to be correctly configured. For example, we store the MulMON dataset folder mulmon_datasets in ../myDatasets/, to train a MulMON on GQN-Jaco dataset using a single GPU, the 4th line of the ./scripts/train_jaco.sh script should look like: data_path=../myDatasets/mulmon_datasets/GQN.

  • Demo (Environment Test)
    Before running the below code, make sure the pretrained models are downloaded and saved first:

    . scripts/demo.sh  
    

    Check ./logs folder for the generated demos.

    • Notes for disentanglement demos: we randomly pick one object for each scene to create the disentanglement demo, so for scene samples where an empty object slot is picked, you won't see any object manipulation effect in the corresponding gifs (especially for the GQN-Jaco scenes). To create a demo like the shown one, one needs to specify (hard-coding) an object slot of interest and traverse informative latent dimensions (as some dimensions are redundant---capture no object property).
  • Train

    • On a single gpu (e.g. using the GQN-Jaco dataset):
    . scripts/train_jaco.sh  
    
    • On multiple GPUs (e.g. using the GQN-Jaco dataset):
    . scripts/train_jaco_parallel.sh  
    
    • To resume training from a stopped session, i.e. saved weights checkpoint-epoch<#number>.pth, simply append a flag --resume_epoch <#number> to one of the flags in the script files.
      For example, to resume previous training (saved as checkpoint-epoch2000.pth) on GQN-Jaco data, we just need to reconfigure the 10th line of the ./scripts/train_jaco.sh as:
      --input_dir ${data_path} --output_dir ${log_path} --resume_epoch 2000 \.
  • Evaluation

    • On a single gpu (e.g. using the Clevr_MV dataset):
    . scripts/eval_clevr.sh  
    
    • Here is a list of imporant evaluation settings which one might wants to play with
      --resume_epoch specify a model to evaluate --test_batch how many batches of test data one uses for evaluation.
      --vis_batch how many batches of output one visualises (save) while evaluation. (note: <= --test_batch)
      --analyse_batch how many batches of latent codes one saves for a post analysis, e.g. disentanglement. (note: <= --test_batch)
      --eval_all (boolean) set True for all [--eval_recon, --eval_seg, --eval_qry_obs, --eval_qry_seg] items, one could also use each of the four independently.
      --eval_dist (boolean) save latent codes for disentanglement analysis. (note: not controlled by --eval_all)
    • For the disentanglement evaluation, run the scripts/eval_clevr.sh script with --eval_dist flag set to True and set the --analyse_batch variable (which controls how many scenes of latent codes one wants to analyse) to be greater than 0. This saves the ouptut latent codes and ground-truth information that allows you to conduct disentanglement quantification using the QEDR framework.
    • You might observe that the evaluation results on the CLE-Aug dataset differ form those on the original paper, this is because the CLE-Aug here is slightly different the one we used for the paper (see more details).

Contact

We constantly respond to the raised ''issues'' in terms of running the code. For further inquiries and discussions (e.g. questions about the paper), email: [email protected].

Cite

Please cite our paper if you find this code useful.

@inproceedings{nanbo2020mulmon,
  title={Learning Object-Centric Representations of Multi-Object Scenes from Multiple Views},
  author={Nanbo, Li and Eastwood, Cian and Fisher, Robert B},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}
Owner
NanboLi
PhD Student, University of Edinburgh
NanboLi
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022