Generalized Decision Transformer for Offline Hindsight Information Matching

Overview

Generalized Decision Transformer for Offline Hindsight Information Matching

[arxiv]

If you use this codebase for your research, please cite the paper:

@article{furuta2021generalized,
  title={Generalized Decision Transformer for Offline Hindsight Information Matching},
  author={Hiroki Furuta and Yutaka Matsuo and Shixiang Shane Gu},
  journal={arXiv preprint arXiv:2111.10364},
  year={2021}
}

Installation

Experiments require MuJoCo. Follow the instructions in the mujoco-py repo to install. Then, dependencies can be installed with the following command:

conda env create -f conda_env.yml

Downloading datasets

Datasets are stored in the data directory. Install the D4RL repo, following the instructions there. Then, run the following script in order to download the datasets and save them in our format:

python download_d4rl_datasets.py

Run experiments

Run train_cdt.py to train Categorical DT:

python train_cdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --condition 'reward' --save_model True

python train_cdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --condition 'xvel' --save_model True

Run eval_cdt.py to eval CDT using saved weights:

python eval_cdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --condition 'reward' --save_rollout True
python eval_cdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --condition 'xvel' --save_rollout True

For Bi-directional DT, run train_bdt.py & eval_bdtf.py

python train_bdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --z_dim 16 --save_model True
python eval_bdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --z_dim 16 --save_rollout True

Reference

This repository is developed on top of original Decision Transformer.

Owner
Hiroki Furuta
The University of Tokyo/Reinforcement Learning
Hiroki Furuta
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022