As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

Overview

HAKE-Action

HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It includes reproduced SOTA models and their HAKE-enhanced versions. HAKE-Action is authored by Yong-Lu Li, Xinpeng Liu, Liang Xu, Cewu Lu. Currently, it is manintained by Yong-Lu Li, Xinpeng Liu and Liang Xu.

News: (2021.10.06) Our extended version of SymNet is accepted by TPAMI! Paper and code are coming soon.

(2021.2.7) Upgraded HAKE-Activity2Vec is released! Images/Videos --> human box + ID + skeleton + part states + action + representation. [Description]

Full demo: [YouTube], [bilibili]

(2021.1.15) Our extended version of TIN (Transferable Interactiveness Network) is accepted by TPAMI! New paper and code will be released soon.

(2020.10.27) The code of IDN (Paper) in NeurIPS'20 is released!

(2020.6.16) Our larger version HAKE-Large (>120K images, activity and part state labels) is released!

We released the HAKE-HICO (image-level part state labels upon HICO) and HAKE-HICO-DET (instance-level part state labels upon HICO-DET). The corresponding data can be found here: HAKE Data.

  • Paper is here.
  • More data and part states (e.g., upon AVA, more kinds of action categories, more rare actions...) are coming.
  • We will keep updating HAKE-Action to include more SOTA models and their HAKE-enhanced versions.

Data Mode

  • HAKE-HICO (PaStaNet* mode in paper): image-level, add the aggression of all part states in an image (belong to one or multiple active persons), compared with original HICO, the only additional labels are image-level human body part states.

  • HAKE-HICO-DET (PaStaNet* in paper): instance-level, add part states for each annotated persons of all images in HICO-DET, the only additional labels are instance-level human body part states.

  • HAKE-Large (PaStaNet in paper): contains more than 120K images, action labels and the corresponding part state labels. The images come from the existing action datasets and crowdsourcing. We mannully annotated all the active persons with our novel part-level semantics.

  • GT-HAKE (GT-PaStaNet* in paper): GT-HAKE-HICO and G-HAKE-HICO-DET. It means that we use the part state labels as the part state prediction. That is, we can perfectly estimate the body part states of a person. Then we use them to infer the instance activities. This mode can be seen as the upper bound of our HAKE-Action. From the results below we can find that, the upper bound is far beyond the SOTA performance. Thus, except for the current study on the conventional instance-level method, continue promoting part-level method based on HAKE would be a very promising direction.

Notion

Activity2Vec and PaSta-R are our part state based modules, which operate action inference based on part semantics, different from previous instance semantics. For example, Pairwise + HAKE-HICO pre-trained Activity2Vec + Linear PaSta-R (the seventh row) achieves 45.9 mAP on HICO. More details can be found in our CVPR2020 paper: PaStaNet: Toward Human Activity Knowledge Engine.

Code

The two versions of HAKE-Action are relesased in two branches of this repo:

Models on HICO

Instance-level +Activity2Vec +PaSta-R mAP [email protected] [email protected] [email protected]
R*CNN - - 28.5 - - -
Girdhar et.al. - - 34.6 - - -
Mallya et.al. - - 36.1 - - -
Pairwise - - 39.9 13.0 19.8 22.3
- HAKE-HICO Linear 44.5 26.9 30.0 30.7
Mallya et.al. HAKE-HICO Linear 45.0 26.5 29.1 30.3
Pairwise HAKE-HICO Linear 45.9 26.2 30.6 31.8
Pairwise HAKE-HICO MLP 45.6 26.0 30.8 31.9
Pairwise HAKE-HICO GCN 45.6 25.2 30.0 31.4
Pairwise HAKE-HICO Seq 45.9 25.3 30.2 31.6
Pairwise HAKE-HICO Tree 45.8 24.9 30.3 31.8
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise GT-HAKE-HICO Linear 65.6 47.5 55.4 56.6

Models on HICO-DET

Using Object Detections from iCAN

Instance-level +Activity2Vec +PaSta-R Full(def) Rare(def) None-Rare(def) Full(ko) Rare(ko) None-Rare(ko)
iCAN - - 14.84 10.45 16.15 16.26 11.33 17.73
TIN - - 17.03 13.42 18.11 19.17 15.51 20.26
iCAN HAKE-HICO-DET Linear 19.61 17.29 20.30 22.10 20.46 22.59
TIN HAKE-HICO-DET Linear 22.12 20.19 22.69 24.06 22.19 24.62
TIN HAKE-Large Linear 22.65 21.17 23.09 24.53 23.00 24.99
TIN GT-HAKE-HICO-DET Linear 34.86 42.83 32.48 35.59 42.94 33.40

Models on AVA (Frame-based)

Method +Activity2Vec +PaSta-R mAP
AVA-TF-Baseline - - 11.4
LFB-Res-50-baseline - - 22.2
LFB-Res-101-baseline - - 23.3
AVA-TF-Baeline HAKE-Large Linear 15.6
LFB-Res-50-baseline HAKE-Large Linear 23.4
LFB-Res-101-baseline HAKE-Large Linear 24.3

Models on V-COCO

Method +Activity2Vec +PaSta-R AP(role), Scenario 1 AP(role), Scenario 2
iCAN - - 45.3 52.4
TIN - - 47.8 54.2
iCAN HAKE-Large Linear 49.2 55.6
TIN HAKE-Large Linear 51.0 57.5

Training Details

We first pre-train the Activity2Vec and PaSta-R with activities and PaSta labels. Then we change the last FC in PaSta-R to fit the activity categories of the target dataset. Finally, we freeze Activity2Vec and fine-tune PaSta-R on the train set of the target dataset. Here, HAKE works like the ImageNet and Activity2Vec is used as a pre-trained knowledge engine to promote other tasks.

Citation

If you find our work useful, please consider citing:

@inproceedings{li2020pastanet,
  title={PaStaNet: Toward Human Activity Knowledge Engine},
  author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu},
  booktitle={CVPR},
  year={2020}
}
@inproceedings{li2019transferable,
  title={Transferable Interactiveness Knowledge for Human-Object Interaction Detection},
  author={Li, Yong-Lu and Zhou, Siyuan and Huang, Xijie and Xu, Liang and Ma, Ze and Fang, Hao-Shu and Wang, Yanfeng and Lu, Cewu},
  booktitle={CVPR},
  year={2019}
}
@inproceedings{lu2018beyond,
  title={Beyond holistic object recognition: Enriching image understanding with part states},
  author={Lu, Cewu and Su, Hao and Li, Yonglu and Lu, Yongyi and Yi, Li and Tang, Chi-Keung and Guibas, Leonidas J},
  booktitle={CVPR},
  year={2018}
}

HAKE

HAKE[website] is a new large-scale knowledge base and engine for human activity understanding. HAKE provides elaborate and abundant body part state labels for active human instances in a large scale of images and videos. With HAKE, we boost the action understanding performance on widely-used human activity benchmarks. Now we are still enlarging and enriching it, and looking forward to working with outstanding researchers around the world on its applications and further improvements. If you have any pieces of advice or interests, please feel free to contact Yong-Lu Li ([email protected]).

If you get any problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!

HAKE-Action is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail. We will send the detail agreement to you.

Owner
Yong-Lu Li
Ph.D. CV_Robotics
Yong-Lu Li
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022