Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

Related tags

Deep Learningt-few
Overview

T-Few

This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning".

This method outperforms in-context learning with GPT-3 and achieves state-of-the-art on "RAFT".

Setup

First, create a virtual environment for the project and install all the requirments. (We use conda to manage environments. Be sure to install and initialize conda first.)

  1. Create a virtual environment with python 3.7 conda create -n tfew python==3.7, then activate the environment conda activate tfew.
  2. Install other dependencies. pip install -r requirements.txt -f https://download.pytorch.org/whl/cu113/torch_stable.html
  3. If you plan to run SAID, then install dependencies with python src/intrinsic_said_setup.py develop. Otherwise, skip this step.

The steps above only needs to be done once. In addition, every time you start a new session, you will need to run . bin/start.sh

Run your first experiment

Once you finished setting up the environment, you can try running CUDA_VISIBLE_DEVICES=3 python -m src.pl_train -c t0.json+rte.json -k save_model=False exp_name=first_exp The outputs of this run will be saved to ${OUTPUT_PATH}/first_exp/, which is usually /t-few/exp_out/first_exp/. Here, first_exp is the experiment name, you can run more experiments with different expeirment names. The code will automatically skip finished experiments. (However, if you wish to rerun a finished experiment under the same experiment name, you will need to manually remove the corresponding files in the output directory.)

There are two ways to control an experiment.

  1. You can specify config files with -c. Multiple config files can be combined with +. (When there are conflits, config terms from the config file on the right will have greater power.) This will be convinient when you have multiple terms that forms a fixed group.
  2. You can override values with -k. This will be convinient when you need to change a small number of terms.

It is recommended to use GPUs with 40GB to train T0(3B) and 80GB to train T0

Run an array of experiments

In this project, we often need to run a large number of experiments. Here is an example bash script bin/few-shot-pretrained-3b-100k.sh to fine-tune 3B pre-trained (IA)3 on all datasets.

This should take a few hours. After that, you can use scripts/get_results_table.py to generate a csv summary.

Citation

If you find this repo helpful, welcome to cite our work:

@article{liu2020tfew,
  title={Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning},
  author={Liu, Haokun and Tam, Derek and Muqeeth, Mohammed and Mohta, Jay and Huang, Tenghao and Bansal, Mohit and Raffel, Colin},
  journal={arXiv preprint arXiv:2205.05638},
  year={2022}
}

We use the following code in our works:

@article{mahabadi2021compacter,
  title={Compacter: Efficient low-rank hypercomplex adapter layers},
  author={Mahabadi, Rabeeh Karimi and Henderson, James and Ruder, Sebastian},
  journal={arXiv preprint arXiv:2106.04647},
  year={2021}
}

@article{sung2021training,
  title={Training Neural Networks with Fixed Sparse Masks},
  author={Sung, Yi-Lin and Nair, Varun and Raffel, Colin},
  journal={arXiv preprint arXiv:2111.09839},
  year={2021}
}

@article{aghajanyan2020intrinsic,
  title={Intrinsic dimensionality explains the effectiveness of language model fine-tuning},
  author={Aghajanyan, Armen and Zettlemoyer, Luke and Gupta, Sonal},
  journal={arXiv preprint arXiv:2012.13255},
  year={2020}
}
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022