MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Related tags

Deep LearningMoCoPnet
Overview

Deformable 3D Convolution for Video Super-Resolution

Pytorch implementation of local motion and contrast prior driven deep network (MoCoPnet). [PDF]

Overview


Requirements

  • Python 3
  • pytorch >= 1.6
  • numpy, PIL

Datasets

Training & test datasets

Download SAITD dataset.

SAITD dataset is a large-scale high-quality semi-synthetic dataset of infrared small target. We employ the 1st-50th sequences with target annotations as the test datasets and the remaining 300 sequences as the training datasets.

Download Hui and Anti-UAV.

Hui and Anti-UAV datasets are used as the test datasets to test the robustness of our MoCoPnet to real scenes. In Anti-UAV dataset, only the sequences with infrared small target (i.e., The target size is less than 0.12% of the image size) are selected as the test set (21 sequences in total). Note that, we only use the first 100 images of each sequence for test to balance computational/time cost and generalization performance.

For simplicity, you can also Download the test datasets in https://pan.baidu.com/s/1oobhklwIChvNJIBpTcdQRQ?pwd=1113 and put the folder in code/data.

Data format:

  1. The training dataset is in code/data/train/SAITD.
train
  └── SAITD
       └── 1
              ├── 0.png
              ├── 1.png
              ├── ...
       └── 2
              ├── 00001
              ├── 00002
              ├── ...		
       ...
  1. The test datasets are in code/data/test as below:
 test
  └── dataset_1
         └── scene_1
              ├── 0.png  
              ├── 1.png  
              ├── ...
              └── 100.png    
               
         ├── ...		  
         └── scene_M
  ├── ...    
  └── dataset_N      

Results

Quantitative Results of SR performance

Table 1. PSNR/SSIM achieved by different methods.

Table 2. SNR and CR results of different methods achieved on super-resolved LR images and super-resolved HR images.

Qualitative Results of SR performance

Figure 1. Visual results of different SR methods on LR images for 4x SR.

Figure 2. Visual results of different SR methods on LR images for 4x SR.

Quantitative Results of detection

Table 3. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved LR images.

Table 4. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved HR images.

Figure 3. ROC results of Tophat, ILCM and IPI achieved on super-resolved LR images.

Figure 4. ROC results of Tophat, ILCM and IPI achieved on super-resolved HR images.

Qualitative Results of detection

Figure 5. Qualitative results of super-resolved LR image and detection results.

Figure 6. Qualitative results of super-resolved HR image and detection results.

Citiation

@article{MoCoPnet,
  author = {Ying, Xinyi and Wang, Yingqian and Wang, Longguang and Sheng, Weidong and Liu, Li and Lin, Zaipin and Zhou, Shilin},
  title = {MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution},
  journal={arXiv preprint arXiv:2201.01014},
  year = {2020},
}

Contact

Please contact us at [email protected] for any question.

Owner
Xinyi Ying
Her current research interests focus on image & video super-resolution and small target detection.
Xinyi Ying
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023