PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

Overview

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering

Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Hariharan2

1 The University of Texas at Austin, 2 Cornell University

[paper] [supp] [project page]

This repository is the official implementation of PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering, CVPR 2021.

Contact: Jang Hyun Cho [email protected].

Please feel free to reach out for any questions or discussions!

Setup

Setting up for this project involves installing dependencies and preparing the datasets.

Installing dependencies

To install all the dependencies, please run the following:

conda env create -f env.yml

Preparing Dataset

Please download the trainset and the validset of COCO dataset as well as the annotations. Place the dataset as following:

/your/dataset/directory/
      └── coco/
            ├── images/
            │     ├── train2017/
            │     │       ├── xxxxxxxxx.jpg
            │     │       └── ...
            │     └── val2017/
            │             ├── xxxxxxxxx.jpg
            │             └── ...
            └── annotations/
                  ├── COCO_2017_train.json
                  └── COCO_2017_val.json

Then, create a symbolic link as following:

cd PiCIE
ln -s /your/dataset/directory/ datasets 

Similarly, setup a symbolic link for the save directory as following:

ln -s /your/save/directory/ results

Finally, move curated folder to datasets/coco/:

mv curated datasets/coco/

This will setup the dataset that contains the same set of images with IIC.

Running PiCIE

Below are training and testing commands to train PiCIE.

Training

Below line will run the training code with default setting in the background.

nohup ./sh_files/train_picie.sh > logs/picie_train.out & 

Below line will run the testing code with default setting in the background.

Testing

nohup ./sh_files/test_picie.sh > logs/picie_test.out &

Pretrained Models (To be updated soon)

We have pretrained PiCIE weights.

Method Dataset Pre-trained weight Train log
PiCIE COCO weight log
PiCIE Cityscapes weight log
MDC COCO weight log
MDC Cityscapes weight log

Visualization (To be updated soon)

We prepared a jupyter notebook for visualization.

Citation

If you find PiCIE useful in your research, please consider citing:

@inproceedings{Cho2021PiCIE,
  title = {PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering},
  author = {Jang Hyun Cho and  Utkarsh Mall and  Kavita Bala and  Bharath Hariharan},
  year = {2021},
  booktitle = {CVPR}
}

Acknowledgements

We thank Facebook AI Research for the open-soource library Faiss. Also, our implementation largely borrows from DeepCluster and DeeperCluster for clustering with Faiss.

TODO's

  • Dependency & dataset setup.
  • Clear up and add complete train & test codes.
  • Baseline MDC code.
  • Weights and logs.
  • Make visualization notebook easier to use + better colors.
Owner
Jang Hyun Cho
PhD student at UT Austin
Jang Hyun Cho
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022