Fuzzy Overclustering (FOC)

Overview

Fuzzy Overclustering (FOC)

In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in many applications these consistent annotations can not be given due to issues like intra- and interobserver variability. We call these inconsistent label fuzzy. Our method Fuzzy Overclustering overclusters the data and can therefore handle these fuzzy labels better than Out-of-the-Box Semi-Supervised Methods.

More details are given in the accpeted full paper at https://doi.org/10.3390/s21196661 or in the preprint https://arxiv.org/abs/2012.01768

The main idea is illustrated below. The graphic and caption are taken from the original work.

main idea of paper

Illustration of fuzzy data and overclustering -- The grey dots represent unlabeled data and the colored dots labeled data from different classes. The dashed lines represent decision boundaries. For certain data, a clear separation of the different classes with one decision boundary is possible and both classes contain the same amount of data (top). For fuzzy data determining a decision boundary is difficult because of intermediate datapoints between the classes (middle). These fuzzy datapoints can often not be easily sorted into one consistent class between annotators. If you overcluster the data, you get smaller but more consistent substructures in the fuzzy data (bottom). The images illustrate possible examples for \certain data (cat & dog) and \fuzzy plankton data (trichodesmium puff and tuft). The center plankton image was considered to be trichodesmium puff or tuft by around half of the annotators each. The left and right plankton image were consistently annotated as their respective class.

Installation

We advise to use docker for the experiments. We recommend a python3 container with tesnorflow 1.14 preinstalled. Additionally the following commands need to be executed:

apt-get update
apt-get install -y libsm6 libxext6 libxrender-dev libgl1-mesa-glx

After this ensure that the requirements from requirements.txt are installed. The most important packages are keras, scipy and opencv.

Usage

The parameters are given in arguments.yaml with their description. Most of the parameters can be left at the default value. Especially the dataset, batch size and epoch related parameters are imported.

As a rule of thumb the following should be applied:

  • overcluster_k = 5-6 * the number of classes
  • batch_size = repetition * overcluster_k * 2-3

You need to define three directories for the execution with docker:

  • DATASET_ROOT, this folder contains a folder with the dataset name. This folder contains a trainand val folder. It needs a folder unlabeled if the parameter unlabeled_data is used. Each folder contains subfolder with the given classes.
  • LOG_ROOT, inside a subdiretory logs all experimental results will be stored with regard to the given IDs and a time stamp
  • SRC_ROOT root of the this project source code

The DOCKER_IMAGE is the above defined image.

You can visualize the results with tensorboard --logdir . from inside the log_dir

Example Usages

bash % test pipeline running docker run -it --rm -v :/data-ssd -v :/data1 -v :/src -w="/src" python main.py --IDs foc experiment_name not_use_mi --dataset [email protected] --unlabeled_data [email protected] --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 --normal_epoch 2 --frozen_epoch 1 % training FOC-Light docker run -it --rm -v :/data-ssd -v :/data1 -v :/home -w="/home" python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 % training FOC (no warmup) % needs multiple GPUs or very large ones (change num gpu to 1 in this case) docker run -it --rm -v :/data-ssd -v :/data1 -v :/home -w="/home" python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 390 --batch_size 390 --overcluster_k 60 --num_gpus 3 --lambda_m 1 --sample_repetition 3 ">
% test container
docker run -it --rm -v 
               
                :/data-ssd -v 
                
                 :/data1   -v 
                 
                  :/src -w="/src" 
                  
                    bash


% test pipeline running
docker run -it --rm -v 
                   
                    :/data-ssd -v 
                    
                     :/data1 -v 
                     
                      :/src -w="/src" 
                      
                        python main.py --IDs foc experiment_name not_use_mi --dataset [email protected] --unlabeled_data [email protected] --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 --normal_epoch 2 --frozen_epoch 1 % training FOC-Light docker run -it --rm -v 
                       
                        :/data-ssd -v 
                        
                         :/data1 -v 
                         
                          :/home -w="/home" 
                          
                            python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 % training FOC (no warmup) % needs multiple GPUs or very large ones (change num gpu to 1 in this case) docker run -it --rm -v 
                           
                            :/data-ssd -v 
                            
                             :/data1 -v 
                             
                              :/home -w="/home" 
                              
                                python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 390 --batch_size 390 --overcluster_k 60 --num_gpus 3 --lambda_m 1 --sample_repetition 3 
                              
                             
                            
                           
                          
                         
                        
                       
                      
                     
                    
                   
                  
                 
                
               
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022