Accurate identification of bacteriophages from metagenomic data using Transformer

Related tags

Deep LearningPhaMer
Overview

PhaMer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocabulary to convert DNA sequences into sentences.

Overview

The main function of PhaMer is to identify phage-like contigs from metagenomic data. The input of the program should be fasta files and the output will be a csv file showing the predictions. Since it is a Deep learning model, if you have GPU units on your PC, we recommand you to use them to save your time.

If you have any trouble installing or using PhaMer, please let us know by opening an issue on GitHub or emailing us ([email protected]).

Required Dependencies

If you want to use the gpu to accelerate the program:

  • cuda

  • Pytorch-gpu

  • For cpu version pytorch: conda install pytorch torchvision torchaudio cpuonly -c pytorch

  • For gpu version pytorch: Search pytorch to find the correct cuda version according to your computer

An easiler way to install

Note: we suggest you to install all the package using conda (both miniconda and Anaconda are ok).

After cloning this respository, you can use anaconda to install the PhaMer.yaml. This will install all packages you need with gpu mode (make sure you have installed cuda on your system to use the gpu version. Othervise, it will run with cpu version). The command is: conda env create -f PhaMer.yaml -n phamer

Prepare the database and environment

Due to the limited size of the GitHub, we zip the database. Before using PhaMer, you need to unpack them using the following commands.

  1. When you use PhaMer at the first time
cd PhaMer/
conda env create -f PhaMer.yaml -n phamer
conda activate phamer
cd database/
bzip2 -d database.fa.bz2
git lfs install
rm transformer.pth
git checkout .
cd ..

Note: Because the parameter is larger than 100M, please make sure you have installed git-lfs to downloaded it from GitHub

  1. If the example can be run without any but bugs, you only need to activate your 'phamer' environment before using PhaMer.
conda activate phamer

Usage

python preprocessing.py [--contigs INPUT_FA] [--len MINIMUM_LEN]
python PhaMer.py [--out OUTPUT_CSV] [--reject THRESHOLD]

Options

  --contigs INPUT_FA
                        input fasta file
  --len MINIMUM_LEN
                        predict only for sequence >= len bp (default 3000)
  --out OUTPUT_CSV
                        The output csv file (prediction)
  --reject THRESHOLD
                        Threshold to reject prophage. The higher the value, the more prophage will be rejected (default 0.3)

Example

Prediction on the example file:

python preprocessing.py --contigs test_contigs.fa
python PhaMer.py --out example_prediction.csv

The prediction will be written in example_prediction.csv. The CSV file has three columns: contigs names, prediction, and prediction score.

References

The paper is submitted to the ISMB 2022.

The arXiv version can be found via: Accurate identification of bacteriophages from metagenomic data using Transformer

Contact

If you have any questions, please email us: [email protected]

Comments
  • issues collections from schackartk (solved)

    issues collections from schackartk (solved)

    Hi! Thank you for publishing your code publicly.

    I am a researcher who works with many tools that identify phage in metagenomes. However, I like to be confident in the implementation of the concepts. I noticed that your repository does not have any formal testing. Without tests, I am always skeptical about implementing a tool in my own work because I cannot be sure it is working as described.

    Would your team be interested in adding tests to the code (e.g. using pytest)? If I, or another developer, were to create a pull request that implemented testing, would your team consider accepting such a request?

    Also, it is a small thing, but I noticed that your code is not formatted in any community-accepted way. Would you consider accepting a pull request that has passed the code through a linter such as yapf or black? I usually add linting as part of my test suites.

    opened by schackartk 12
  • Rename preprocessing.py?

    Rename preprocessing.py?

    Hi Kenneth,

    preprocessing.py is a pretty generic name; maybe rename the script to PhaMer_preprocess.py to avoid potential future conflicts with other software?

    opened by sjaenick 1
  • bioconda recipe

    bioconda recipe

    Any plans on creating a bioconda recipe for PhaMer? That would greatly help users with the install & version management of PhaMer.

    Also in regards to:

    Because the parameter is larger than 100M, please make sure you have downloaded transformer.pth correctly.

    Why not just use md5sum?

    opened by nick-youngblut 1
  • Threading/Performance updates

    Threading/Performance updates

    Hi,

    • introduce ---threads to control threading behavior
    • allow to supply external database directory, so DIAMOND database formatting isn't needed every time
    • use 'pprodigal' for faster gene prediction step
    • removed unused imports

    Please note I didn't yet add pprodigal to the conda yaml - feel free to do so if you want to include it

    opened by sjaenick 1
  • Bug: Unable to clone repository

    Bug: Unable to clone repository

    Hello,

    It seems that this repository is exceeding its data transfer limits. I believe you are aware of this, as you instruct users to download the transformer.pth from Google Drive.

    However, it seems that I cannot clone the repository in general. I just want to make sure this is not a problem on my end, so I will walk through what I am doing.

    Reproducible Example

    First, cloning the repository

    $ git clone [email protected]:KennthShang/PhaMer.git
    Cloning into 'PhaMer'...
    Downloading database/transformer.pth (143 MB)
    Error downloading object: database/transformer.pth (28a82c1): Smudge error: Error downloading database/transformer.pth (28a82c1ca0fb2499c0071c685dbf49f3a0d060fdc231bb04f7535e88e7fe0858): batch response: This repository is over its data quota. Account responsible for LFS bandwidth should purchase more data packs to restore access.
    
    Errors logged to /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/.git/lfs/logs/20220124T113548.16324098.log
    Use `git lfs logs last` to view the log.
    error: external filter git-lfs smudge -- %f failed 2
    error: external filter git-lfs smudge -- %f failed
    fatal: database/transformer.pth: smudge filter lfs failed
    warning: Clone succeeded, but checkout failed.
    You can inspect what was checked out with 'git status'
    and retry the checkout with 'git checkout -f HEAD'
    

    Checking git status as suggested indicates that several files were not checked out

    $ cd PhaMer/
    $ git status
    # On branch main
    # Changes to be committed:
    #   (use "git reset HEAD <file>..." to unstage)
    #
    #	deleted:    .gitattributes
    #	deleted:    LICENSE.txt
    #	deleted:    PhaMer.py
    #	deleted:    PhaMer.yaml
    #	deleted:    README.md
    #	deleted:    database/.DS_Store
    #	deleted:    database/contigs.csv
    #	deleted:    database/database.fa.bz2
    #	deleted:    database/pc2wordsid.dict
    #	deleted:    database/pcs.csv
    #	deleted:    database/profiles.csv
    #	deleted:    database/proteins.csv
    #	deleted:    database/transformer.pth
    #	deleted:    logo.jpg
    #	deleted:    model.py
    #	deleted:    preprocessing.py
    #	deleted:    test_contigs.fa
    #
    # Untracked files:
    #   (use "git add <file>..." to include in what will be committed)
    #
    #	.gitattributes
    #	LICENSE.txt
    #	PhaMer.py
    #	PhaMer.yaml
    #	README.md
    #	database/
    

    To confirm that several files are missing, such as preprocessing.py.

    $ ls
    database  LICENSE.txt  PhaMer.py  PhaMer.yaml  README.md
    

    Continuing with installation instructions anyway in case they resolve these issues.

    $ conda env create -f PhaMer.yaml -n phamer
    Collecting package metadata (repodata.json): done
    Solving environment: done
    Preparing transaction: done
    Verifying transaction: done
    Executing transaction: \ By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html
    
    done
    Installing pip dependencies: / Ran pip subprocess with arguments:
    ['/home/u29/schackartk/.conda/envs/phamer/bin/python', '-m', 'pip', 'install', '-U', '-r', '/xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt']
    Pip subprocess output:
    Collecting joblib==1.1.0
      Using cached joblib-1.1.0-py2.py3-none-any.whl (306 kB)
    Collecting scikit-learn==1.0.1
      Using cached scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.9 MB)
    Collecting sklearn==0.0
      Using cached sklearn-0.0-py2.py3-none-any.whl
    Collecting threadpoolctl==3.0.0
      Using cached threadpoolctl-3.0.0-py3-none-any.whl (14 kB)
    Requirement already satisfied: scipy>=1.1.0 in /home/u29/schackartk/.conda/envs/phamer/lib/python3.8/site-packages (from scikit-learn==1.0.1->-r /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt (line 2)) (1.7.1)
    Requirement already satisfied: numpy>=1.14.6 in /home/u29/schackartk/.conda/envs/phamer/lib/python3.8/site-packages (from scikit-learn==1.0.1->-r /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt (line 2)) (1.21.2)
    Installing collected packages: threadpoolctl, joblib, scikit-learn, sklearn
    Successfully installed joblib-1.1.0 scikit-learn-1.0.1 sklearn-0.0 threadpoolctl-3.0.0
    
    done
    #
    # To activate this environment, use
    #
    #     $ conda activate phamer
    #
    # To deactivate an active environment, use
    #
    #     $ conda deactivate
    

    Activating the conda environment and attempting to get transformer.pth

    $ conda activate phamer
    $ cd database
    $ bzip2 -d database.fa.bz2
    $ git lfs install
    Updated git hooks.
    Git LFS initialized.
    $ rm transformer.pth
    rm: cannot remove ‘transformer.pth’: No such file or directory
    $ git checkout .
    error: pathspec './' did not match any file(s) known to git.
    
    $ ls
    contigs.csv  database.fa  pc2wordsid.dict  pcs.csv  profiles.csv  proteins.csv
    

    Since the file doesn't seem to exist, I followed your Google Drive link and pasted into database/ manually.

    $ ls
    contigs.csv  database.fa  pc2wordsid.dict  pcs.csv  profiles.csv  proteins.csv  transformer.pth
    

    I will try checking out again.

    $ git checkout .
    error: pathspec './' did not match any file(s) known to git.
    

    Going back up, you can see that I am still missing scripts.

    $ cd ..
    $ ls
    metaphinder_reprex  phage_finders  PhaMer  snakemake_tutorial
    

    Conclusions

    I am missing the scripts and cannot run the tool. I believe this all comes down to the repo exceedingits data transfer limits. This is probably due to you storing the large database files in the repository.

    Possible solution?

    Going forward, maybe entirely remove the large files from the repo so that you don't exceed limits. I am not sure what I can do at this moment since the limits are already exceeded.

    Also, it would be helpful if I could obtain the transformer.pth from the command line (e.g. using wget) since I, and many researchers, are working on an HPC or cloud.

    Thank you, -Ken

    opened by schackartk 1
Releases(v1.0)
Owner
Kenneth Shang
Kenneth Shang
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023