Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

Overview

autolfads-tf2

A TensorFlow 2.0 implementation of LFADS and AutoLFADS.

Installation

Clone the autolfads-tf2 repo and create and activate a conda environment with Python 3.7. Use conda to install cudatoolkit and cudnn and pip install the lfads_tf2 and tune_tf2 packages with the -e (editable) flag. This will allow you to import these packages anywhere when your environment is activated, while also allowing you to edit the code directly in the repo.

git clone [email protected]:snel-repo/autolfads-tf2.git
cd autolfads-tf2
conda create --name autolfads-tf2 python=3.7
conda activate autolfads-tf2
conda install -c conda-forge cudatoolkit=10.0
conda install -c conda-forge cudnn=7.6
pip install -e lfads-tf2
pip install -e tune-tf2

Usage

Training single models with lfads_tf2

The first step to training an LFADS model is setting the hyperparameter (HP) values. All HPs, their descriptions, and their default values are given in the defaults.py module. Note that these default values are unlikely to work well on your dataset. To overwrite any or all default values, the user must define new values in a YAML file (example in configs/lorenz.yaml).

The lfads_tf2.models.LFADS constructor takes as input the path to the configuration file that overwrites default HP values. The path to the modeled dataset is also specified in the config, so LFADS will load the dataset automatically.

The train function will execute the training loop until the validation loss converges or some other stopping criteria is reached. During training, the model will save various outputs in the folder specified by MODEL_DIR. Console outputs will be saved to train.log, metrics will be saved to train_data.csv, and checkpoints will be saved in lfads_ckpts.

After training, the sample_and_average function can be used to compute firing rate estimates and other intermediate model outputs and save them to posterior_samples.h5 in the MODEL_DIR.

We provide a simple example in example_scripts/train_lfads.py.

Training AutoLFADS models with tune_tf2

The autolfads-tf2 framework uses ray.tune to distribute models over a computing cluster, monitor model performance, and exploit high-performing models and their HPs.

Setting up a ray cluster

If you'll be running AutoLFADS on a single machine, you can skip this section. If you'll be running across multiple machines, you must initialize the cluster using these instructions before you can submit jobs via the Python API.

Fill in the fields indicated by <>'s in the ray_cluster_template.yaml, and save this file somewhere accessible. Ensure that a range of ports is open for communication on all machines that you intend to use (e.g. 10000-10099 in the template). In your autolfads-tf2 environment, start the cluster using ray up <NEW_CLUSTER_CONFIG>. The cluster may take up to a minute to get started. You can test that all machines are in the cluster by ensuring that all IP addresses are printed when running example_scripts/ray_test.py.

Starting an AutoLFADS run

To run AutoLFADS, copy the run_pbt.py script and adjust paths and hyperparameters to your needs. Make sure to only use only as many workers as can fit on the machine(s) at once. If you want to run across multiple machines, make sure to set SINGLE_MACHINE = False in run_pbt.py. To start your PBT run, simply run run_pbt.py. When the run is complete, the best model will be copied to a best_model folder in your PBT run folder. The model will automatically be sampled and averaged and all outputs will be saved to posterior_samples.h5.

References

Keshtkaran MR, Sedler AR, Chowdhury RH, Tandon R, Basrai D, Nguyen SL, Sohn H, Jazayeri M, Miller LE, Pandarinath C. A large-scale neural network training framework for generalized estimation of single-trial population dynamics. bioRxiv. 2021 Jan 1.

Keshtkaran MR, Pandarinath C. Enabling hyperparameter optimization in sequential autoencoders for spiking neural data. Advances in Neural Information Processing Systems. 2019; 32.

Comments
  • Update lfads-tf2 dependencies for Google Colab compatibility

    Update lfads-tf2 dependencies for Google Colab compatibility

    Summary of changes to setup.py

    • Change pandas==1.0.0 to pandas==1.* to avoid a dependency conflict with google-colab
    • Add PyYAML>=5.1 so that yaml.full_loadworks in lfads-tf2.
    opened by yahiaali 0
  • Are more recent versions of tensorflow/CUDA supported by the package?

    Are more recent versions of tensorflow/CUDA supported by the package?

    Right now the package supports TF 2.0 and CUDA 10.0 which are more than 3 years old. Is there support planned/already established for more recent Tensorflow and CUDA versions?

    Thanks!

    opened by stes 0
  • Error: No 'git' repo detected for 'lfads_tf2'

    Error: No 'git' repo detected for 'lfads_tf2'

    Hello, I am having this issue. I have followed all the installation instructions, and I was wondering why this issue would come up. autolfads-tf2 is cloned using git, and it is inside the git folder. But it seems like train_lfads.py is not loading data. I am using Window 10.

    error

    Thank you so much in advance!

    opened by jinoh5 0
  • Add warnings and assertion to chop functions for bad overlap

    Add warnings and assertion to chop functions for bad overlap

    Add warnings and assertion to chop functions when requested overlap is greater than half of window length

    Addresses https://github.com/snel-repo/autolfads-tf2/issues/2

    opened by raeedcho 0
  •  `merge_chops` is unable to merge when the requested overlap is more than half of the window length

    `merge_chops` is unable to merge when the requested overlap is more than half of the window length

    Without really thinking a whole lot about it, I chopped data to window length 100 and overlap 80, since this would leave at most 20 points of unmodeled data at the end of the trials I'm trying to model. The chopping seems to work totally fine, but when merging the chops together, it seems that the code assumes that the overlap will be at most half the size of the window, and the math to put the chops back together breaks down in weird ways, leading to duplicated data in the final array.

    On further thought, it makes sense to some degree to limit the overlap to be at most half of the window length, since otherwise, data from more than two chops would have to be integrated together to merge everything--if this is the thought process, I think it would be a good idea to put an assertion in both functions that this is the case (or maybe at least an assertion in the merge_chops function and a warning in the chop_data function, since chopping technically works fine).

    If instead it would make sense to be able to merge chops with overlap greater than half the window size, then I think the merge_chops function needs to be reworked to be able to integrate across more than two chops

    opened by raeedcho 0
Releases(v0.1)
Owner
Systems Neural Engineering Lab
Emory University and Georgia Institute of Technology
Systems Neural Engineering Lab
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023