Code for Multimodal Neural SLAM for Interactive Instruction Following

Overview

Code for Multimodal Neural SLAM for Interactive Instruction Following

Code structure

The code is adapted from E.T. and most training as well as data processing files are in currently in the ET/notebooks folder and the et_train folder.

Dependency

Inherited from the E.T. repo, the package is depending on:

  • numpy
  • pandas
  • opencv-python
  • tqdm
  • vocab
  • revtok
  • numpy
  • Pillow
  • sacred
  • etaprogress
  • scikit-video
  • lmdb
  • gtimer
  • filelock
  • networkx
  • termcolor
  • torch==1.7.1
  • torchvision==0.8.2
  • tensorboardX==1.8
  • ai2thor==2.1.0
  • E.T. (https://github.com/alexpashevich/E.T.)

MaskRCNN Fine-tuning

To fine-tune the MaskRCNN module used in solving the Alfred challenge, we provide the code adapted from the official PyTorch tutorial.

Setup

We assume the environment and the code structure as in the E.T. model is set up, with this repo served as an extension. Although the fine-tuning code should be a standalone unit.

Training Data Geneation

Given a traj_data.json file (e.g., the 45K one used in E.T. joint-training here), run python -m alfred.gen.render_trajs as in E.T. to render the training inputs (raw images) and the ground truth labels (instance segmentation masks) for all the frames recorded in the traj_data.json files. Make sure the flag for generating instance level segmentation masks is set to True.

Pre-processing Instance Segmentation Masks

The rendered instance segmentation masks need to be preprocessed so that the data format is aligned with the one used in the official PyTorch tutorial. In specific, each generated mask is of a different RGB color per instance, which is mapped to the unique instance index in the frame as well as a label index for its semantic class. The mapping is constructed by looking up the traj['scene']['color_to_object_type'] in each of the json dictionaries. The code also supports the functionality to only collect training data from certain subgoal data (such as for PickupObject in Alfred). Notice that there are some bugs in the rendering process of the masks which creates some artifacts (small regions in the ground truth labels that correspond to no actual objects). This can be fixed by only selecting instance masks that are larger than certain area (e.g., > 10 as in alfred/data/maskrcnn.py).

Training

Run python -m alfred.maskrcnn.train which first loads the pre-trained model provided by E.T. and then fine-tunes it on the pre-processed data mentioned above.

Evaluation

We follow the MSCOCO evaluation protocal which is widely used for object detection and instance segmentation, which output average precision and recall at multiple scales. The evaluation function call evaluate(model, data_loader_test, device=device) in alfred/maskrcnn/train.py serves as an example.

RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023