Multi-objective constrained optimization for energy applications via tree ensembles

Overview

MOO_TREES

This repository contains scripts for the multi-objective extension of ENTMOOT featured in: .

Please cite this work as:

@article{thebelt2021mootrees,
  title={{Multi-objective constrained optimization for energy applications via tree ensembles}},
  author={Thebelt, Alexander and Tsay, Calvin and Lee, Robert M and Sudermann-Merx, Nathan and Walz, David and Tranter, Tom and Misener, Ruth},
  journal={Applied Energy},
  volume={306},
  pages={118061},
  year={2022},
  publisher={Elsevier}
}

Dependencies

  • python >= 3.7.4
  • numpy >= 1.20.3
  • scipy >= 1.6.3
  • gurobipy >= 9.1.2
  • pyaml >= 20.4.0
  • scikit-learn >= 0.24.2
  • lightgbm >= 3.2.1
  • pybamm >= 0.4.0

For PyBaMM please install this branch https://github.com/pybamm-team/PyBaMM/tree/issue-1575-discharged_energy, which allows direct access to the discarged_energy variable. The following command will install the right branch:

pip install git+https://github.com/pybamm-team/[email protected]_energy

Installing Gurobi

The solver software Gurobi is required to run the examples. Gurobi is a commercial mathematical optimization solver and free of charge for academic research. It is available on Linux, Windows and Mac OS.

Please follow the instructions to obtain a free academic license. Once Gurobi is installed on your system, follow the steps to setup the Python interface gurobipy.

Running Experiments

This repo includes the two benchmark problems: (i) windfarm layout optimization which was adapted from here, and (ii) battery optimization which uses PyBaMM to simulate different configurations.

To run experiments please first execute create_init to generate all initial points for 25 different random seeds for both benchmarks which will be stored in moo_results/bb_init.json. A directory moo_results will be created if it doesn't exist already.

Afterwards, you can call main.py to run experiments:

e.g. python main.py Windfarm 101 10 runs the windfarm benchmark for random seed 101 and evaluation budget 10.

Authors

License

This repository is released under the BSD 3-Clause License. Please refer to the LICENSE file for details.

Acknowledgements

This work was supported by BASF SE, Ludwigshafen am Rhein, EPSRC Research Fellowships to RM (EP/P016871/1) and CT (EP/T001577/1), and an Imperial College Research Fellowship to CT. TT acknowledges funding from the EPSRC Faraday Institution Multiscale Modelling Project (EP/S003053/1, FIRG003).

Owner
C⚙G - Imperial College London
Computational Optimisation Group @ Imperial College London
C⚙G - Imperial College London
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023