Multi-objective constrained optimization for energy applications via tree ensembles

Overview

MOO_TREES

This repository contains scripts for the multi-objective extension of ENTMOOT featured in: .

Please cite this work as:

@article{thebelt2021mootrees,
  title={{Multi-objective constrained optimization for energy applications via tree ensembles}},
  author={Thebelt, Alexander and Tsay, Calvin and Lee, Robert M and Sudermann-Merx, Nathan and Walz, David and Tranter, Tom and Misener, Ruth},
  journal={Applied Energy},
  volume={306},
  pages={118061},
  year={2022},
  publisher={Elsevier}
}

Dependencies

  • python >= 3.7.4
  • numpy >= 1.20.3
  • scipy >= 1.6.3
  • gurobipy >= 9.1.2
  • pyaml >= 20.4.0
  • scikit-learn >= 0.24.2
  • lightgbm >= 3.2.1
  • pybamm >= 0.4.0

For PyBaMM please install this branch https://github.com/pybamm-team/PyBaMM/tree/issue-1575-discharged_energy, which allows direct access to the discarged_energy variable. The following command will install the right branch:

pip install git+https://github.com/pybamm-team/[email protected]_energy

Installing Gurobi

The solver software Gurobi is required to run the examples. Gurobi is a commercial mathematical optimization solver and free of charge for academic research. It is available on Linux, Windows and Mac OS.

Please follow the instructions to obtain a free academic license. Once Gurobi is installed on your system, follow the steps to setup the Python interface gurobipy.

Running Experiments

This repo includes the two benchmark problems: (i) windfarm layout optimization which was adapted from here, and (ii) battery optimization which uses PyBaMM to simulate different configurations.

To run experiments please first execute create_init to generate all initial points for 25 different random seeds for both benchmarks which will be stored in moo_results/bb_init.json. A directory moo_results will be created if it doesn't exist already.

Afterwards, you can call main.py to run experiments:

e.g. python main.py Windfarm 101 10 runs the windfarm benchmark for random seed 101 and evaluation budget 10.

Authors

License

This repository is released under the BSD 3-Clause License. Please refer to the LICENSE file for details.

Acknowledgements

This work was supported by BASF SE, Ludwigshafen am Rhein, EPSRC Research Fellowships to RM (EP/P016871/1) and CT (EP/T001577/1), and an Imperial College Research Fellowship to CT. TT acknowledges funding from the EPSRC Faraday Institution Multiscale Modelling Project (EP/S003053/1, FIRG003).

Owner
C⚙G - Imperial College London
Computational Optimisation Group @ Imperial College London
C⚙G - Imperial College London
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022