Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

Related tags

Deep LearningToxiChat
Overview

ToxiChat

Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts".

Install dependencies

conda env create -f environment.yml

Data

The train, dev, test split of the data are given in data/OC_S_post_thread/ folder

Offensive and Stance Classification models

Single instance Offensive Classification

NBOW model

We will train NBOW single sentence classification model initialized with GloVe embedding
To train NBOW model, you'd need to download and extract GloVe vectors into data/GloVe/ dir and then run python convert_glove_text_vectors_to_pkl.py from within the directory

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_NBOW_offensive_classifier.py -g data/GloVe/glove.6B.300d.pkl -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/NBOW_OC_S_offensive_e30 -o results/OC_S_post_thread/NBOW_OC_S_offensive_e30 -e 30 -dv 1 -t

BERT large cased model

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_BERT_offensive_classifier.py -e 8 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/BERT_large_OC_S_offensive_e8 -o results/OC_S_post_thread/BERT_large_OC_S_offensive_e8 -t

Full Sequence Offensive Classification (DGPT)

We will train a DGPT model offensive classifier for the entire comment thread with EOS tokens used for sentence representations.

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_DGPT_offensive_classifier.py -e 12 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_offensive_e12 -o results/OC_S_post_thread/DGPT_medium_OC_S_offensive_e12 -t
  • Training offensive classifier on OC_S_post_thread + SBF data
    python experiments/train_and_evaluate_DGPT_offensive_classifier.py -e 3 -td "{'OC_S':'data/OC_S_post_thread/', 'SBF':'data/SBF'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -o results/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -t -dv 4

Stance Classification

Pairwise Stance Classification

NBOW model

We will train NBOW Sentence Pair classification model initialized with GloVe embedding

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_NBOW_pairwise_stance_classifier.py -g data/GloVe/glove.6B.300d.pkl -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/NBOW_OC_S_pairwise_stance_e30 -o results/OC_S_post_thread/NBOW_OC_S_pairwise_stance_e30 -e 30 -dv 1 -t

BERT large cased model

We will train Bert Sentence Pair classification model

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_BERT_pairwise_stance_classifier.py -e 8 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/BERT_large_OC_S_pairwise_stance_e8 -o results/OC_S_post_thread/BERT_large_OC_S_pairwise_stance_e8 -t

Full Sequence Stance Classification

We will train a DGPT model stance classifier for the entire comment thread with EOS tokens used for sentence representations.

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_DGPT_stance_classifier.py -e 12 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e12 -o results/OC_S_post_thread/DGPT_medium_OC_S_stance_e12 -t
  • Training Stance classifier on OC_S_post_thread_data (Focal Loss)
    python experiments/train_and_evaluate_DGPT_stance_classifier.py -e 16 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -o results/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -foc -lr 5e-5 -t

To download pretrained DGPT offensive and Stance (Focal) classifiers use the following link

Mitigating Offensive language using Controlled Text Generation

Dataset Preparation

We will first create a dataset of posts and comments from all of the reddit. Then we will create comment trees from these posts and comments and label them with our stance and offensive classifiers

Downloading the reddit posts and comments dumps

  1. Download the reddit comments and submissions dumps from August(08) to October(10), 2019 in the data folder
    mkdir -p data/reddit_dumps/comments_compressed
    cd data/reddit_dumps/comments_compressed
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-10.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-09.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-08.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-07.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-06.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-05.zst
    cd ..
    mkdir posts_compressed
    cd posts_compressed
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-10.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-09.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-08.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-07.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-06.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-05.zst
    cd ../../
    

Create posts and comments sample

  • python extract_reddit_posts.py -f data/reddit_dumps/posts_compressed/RS_2019-10.zst data/reddit_dumps/posts_compressed/RS_2019-09.zst data/reddit_dumps/posts_compressed/RS_2019-08.zst data/reddit_dumps/posts_compressed/RS_2019-07.zst data/reddit_dumps/posts_compressed/RS_2019-06.zst data/reddit_dumps/posts_compressed/RS_2019-05.zst -p 0.8 -o data/reddit_dumps/posts/all_mitigating_sample/
  • python extract_reddit_comments_for_posts.py -f data/reddit_dumps/comments_compressed/RC_2019-05.zst data/reddit_dumps/comments_compressed/RC_2019-06.zst data/reddit_dumps/comments_compressed/RC_2019-07.zst data/reddit_dumps/comments_compressed/RC_2019-08.zst data/reddit_dumps/comments_compressed/RC_2019-09.zst data/reddit_dumps/comments_compressed/RC_2019-10.zst -p data/reddit_dumps/posts/all_mitigating_sample/all_subreddit_posts.jsonl -o data/reddit_dumps/comments/all_mitigating_sample/

Create threads from posts and comments sample

python create_post_comment_trees_from_all_reddit_sample.py -ip data/reddit_dumps/posts/all_mitigating_sample/all_subreddit_posts.jsonl -ic data/reddit_dumps/comments/all_mitigating_sample/all_subreddit_post_related_comments.jsonl -mc 3 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/

Split the post comment threads into 4 splits

python split_threads_into_files.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/all_reddit_post_and_comments_3_threads.pkl -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/ -n 4

Predict separately for each split

  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_0.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_0_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_1.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_1_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_2.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_2_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_3.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_3_preds.pkl

Merge predictions

python merge_Off_Stance_predictions.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -n 4 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/merged_split_predictions.pkl

Create CTG fine-tuning dataset from post_comment threads with stance and offensive labels

python get_fine_tuning_subsets_from_label_predicted_convs.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/merged_split_predictions.pkl -o data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/

Fine-tune DGPT medium model for different CTG experiments

DAPT

CTG using DAPT i.e. simply training on the subset we care about

1. Off Control [SAFE] subset (DAPT - [S])

python experiments/CTG_DGPT_finetuner.py -so [SAFE] -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_dev.pkl -s saved_models/CTG/Off_control_DGPT_safe_subset -o results/CTG/Off_control_DGPT_safe_subset -e 3

2. Safe Stance Control [NO-STANCE] subset (DAPT - [S][N])

python experiments/CTG_DGPT_finetuner.py -so [NO-STANCE] -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_dev.pkl -s saved_models/CTG/safe_stance_control_DGPT_no_stance_subset -o results/CTG/safe_stance_control_DGPT_no_stance_subset -e 3

ATCON

CTG using control labels

1. Offensive Label Control (ATCON [S])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_dev.pkl -s saved_models/CTG/Off_control_DGPT -o results/CTG/Off_control_DGPT -e 3 -dv 100

2. Stance Label Control (Safe) (ATCON [N])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_dev.pkl -s saved_models/CTG/safe_stance_control_DGPT -o results/CTG/safe_stance_control_DGPT -e 3

3. Both Offensive and Stance Label Control (both) (ATCON [S][N])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/both_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/both_control_dev.pkl -s saved_models/CTG/both_control_DGPT -o results/CTG/both_control_DGPT -e 3

Generate Responses on test set using CTG models

Control labels [OFF]/[SAFE] and [AGREE]/[NO-STANCE]

  • Baseline No Control
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m microsoft/DialoGPT-medium -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -n 1 -bs 10 -o results/CTG/DGPT/test_threads_replies_and_off_stance_preds.pkl
  • DAPT Offensive Control Safe Subset (DAPT - [S])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/Off_control_DGPT_safe_subset -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/Off_control_DGPT/DAPT_Off_control_safe_subset_test_threads_replies_and_off_stance_preds.pkl
  • DAPT Safe Stance Control No-Stance Subset (DAPT - [S][N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/safe_stance_control_DGPT_no_stance_subset -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/safe_stance_control_DGPT/DAPT_safe_stance_control_no_stance_subset_test_threads_replies_and_off_stance_preds.pkl
  • Offensive Control (ATCON - [S])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/Off_control_DGPT -p [SAFE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/Off_control_DGPT/Off_control_test_threads_safe_replies_and_off_stance_preds.pkl
  • Stance Control (Safe) (ATCON - [N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/safe_stance_control_DGPT -p [NO-STANCE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/safe_stance_control_DGPT/safe_stance_control_test_threads_no_stance_replies_and_off_stance_preds.pkl
  • Both Control (ATCON - [S][N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/both_control_DGPT -p [SAFE][NO-STANCE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/both_control_DGPT/both_control_test_threads_safe_no_stance_replies_and_off_stance_preds.pkl

Automatic evalaution of CTG test predictions

python automatic_evaluation_of_CTG_test_predictions.py -mg "[('DGPT medium baseline', 'results/CTG/DGPT/test_threads_replies_and_off_stance_preds.pkl'), ('ATCON - [S]', 'results/CTG/Off_control_DGPT/Off_control_test_threads_safe_replies_and_off_stance_preds.pkl'), ('ATCON [N]', 'results/CTG/safe_stance_control_DGPT/safe_stance_control_test_threads_no_stance_replies_and_off_stance_preds.pkl'), ('ATCON [N][S]', 'results/CTG/both_control_DGPT/both_control_test_threads_safe_no_stance_replies_and_off_stance_preds.pkl'), ('DAPT [S]', 'results/CTG/Off_control_DGPT/DAPT_Off_control_safe_subset_test_threads_replies_and_off_stance_preds.pkl'), ('DAPT [S][N]', 'results/CTG/safe_stance_control_DGPT/DAPT_safe_stance_control_no_stance_subset_test_threads_replies_and_off_stance_preds.pkl')]" -o results/CTG/auto_eval/

Citation

@article{baheti2021just,
  title={Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts},
  author={Baheti, Ashutosh and Sap, Maarten and Ritter, Alan and Riedl, Mark},
  journal={arXiv preprint arXiv:2108.11830},
  year={2021}
}
Owner
Ashutosh Baheti
I am a Computer Science PhD student working with Prof. Alan Ritter. I will be a graduate student at Georgia Tech starting from Fall 2020.
Ashutosh Baheti
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022