An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Overview

Channel LM Prompting (and beyond)

This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Channel Language Model Prompting for Few-Shot Text Classification" 2021.

For any questions about the paper or the code, or to request pretrained checkpoints, please contact the first author (email) or leave issues.

If you find our code or paper useful, please cite the paper:

@article{ min2021noisy ,
  title={ Noisy Channel Language Model Prompting for Few-Shot Text Classification },
  author={ Min, Sewon and Lewis, Mike and Hajishirzi, Hannaneh and Zettlemoyer, Luke },
  journal={ arXiv preprint },
  year={ 2021 }
}

This also includes implementations of many recent papers studying prompt-based learning. Please make sure to cite corresponding papers when you use implementations of the methods in this repo.

Content

  1. Installation
  2. Download & Preprocess Data
  3. Demonstration-based methods
  4. Tuning methods

You can run the channel model and the direct model for each of these methods. Please see Section 3 of the paper for more details about these formulations.

Installation

$ conda create -n lm-prompt python=3.8
$ conda activate lm-prompt
$ conda install pytorch=1.7.1 -c pytorch
$ pip install transformers==4.3.0

Download and Preprocess Data

We use (and modify) the data and the preprocessing script from Gao et al. ACL 2021 (paper, code) and Zhang et al. NeurIPS 2015 (paper, data).

To download the k-shot data (already preprocessed): Download the data (776MB) from this link. Pleae place data.zip under the same directory as the code and unzip it.

To download the original data and preprocess yourself:

pip install pandas==1.1.5 # for preprocessing script
mkdir data
cd data
wget https://nlp.cs.princeton.edu/projects/lm-bff/datasets.tar
tar xvf datasets.tar
cd ..

Also, download the data from here and place it in data/original.

Then, run python3 generative_k_shot_data.py, and you are done!

Optionally, you can specify arguments such as

  • --k: number of training examples (default is 16).
  • --balance: whether or not to guarantee the balance between labels in the training data; more precisely, whether k is the number of training examples in total or per label (default is False).
  • --data_dir: directory for the original data (default is data/original).
  • --output_dir: directory for the preprocessed data (default is data).

To check the data: You can see the list of eleven datasets used in the paper by ls data/k-shot. Each dataset consists of five different splits based on five different splits (test sets are the same).

Demonstration-based methods

This section is for methods which does not update any of the model parameters. For details about methods, please see Section 4.1 of the paper.

Zero-shot

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --do_zeroshot \
    --method {direct|channel}

This command will run zero-shot inference using GPT2-large using four different templates (verbalizers) as reported in the paper.

  • For "channel", please specify --method channel.
  • For "direct", please specify --method direct.
  • For "direct++", please run the command line without --split first (this will run inference using the N/A input, following Zhao et al. ICML 2021), and then run the command line with --method direct --use_calibration.

Useful notes:

  • Note that, once you run inference, it will save a cache in the out directory, and will re-load the cache file when you run the exact same command line.
  • You can adjust --batch_size if you run into OOM issue (default is 32).
  • Please note that GPU parallization is not implemented for inference.
  • To save a log file, please specify --log_file.
  • To use GPT2 with different sizes, please use --gpt2 {gpt2|gpt2-medium|gpt2-xl}.

Concat-based demonstration

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --do_zeroshot \
    --method {direct|channel} \
    --use_demonstrations \
    --k 16 \
    --seed {13|21|42|87|100}
  • You can modify k and seed to try different numbers of training examples and different seeds for the k-shot data.

Ensemble-based demonstration

Add --ensemble to the command line for the Concat-based demonstration method.

Tuning methods

This section is for methods that fully finetune the model parameters (standard finetuning), or update a very limited number of parameters (prompt tuning, head tuning and transformation tuning). For details about the methods, please see Section 4.2 of the paper.

Prompt tuning

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --method {direct|channel} \
    --prompt_tune \
    --do_train \
    --batch_size 32 \
    --lr {0.1|0.01|0.001}
  • Please see Appendix B of the paper to see which learning rate we used for each dataset.
  • Once you train the model, you can specify --do_check to load the existing checkpoint without retraining the model.
  • Please note that GPU parallization is implemented for training, but is not implemented for inference.
  • Note that, by default, we use the checkpoint that is trained for 100 steps.
  • To explore different numbers of prompts, please specify --n_prefix. The default value is 20, following the original prompt tuning paper (Lester et al. 2021).
  • If you want to explore zero-shot task transfer (Section 6.4 in the paper), you can (1) first train the model on the training data, and (2) run inference by specifying --task {task_name_for_test} --train_task {task_name_for_train} --do_check.

Head tuning

Use --head_tune instead of --prompt_tune to the command line for the Prompt tuning method. Note that head tuning is only for the direct baseline.

Transformation tuning

Use --transform_tune instead of --prompt_tune to the command line for the Prompt tuning method. Note that transformation tuning is only for the direct baseline.

Standard finetuning

To finetune the entire model parameters, as in typical finetuning, please do not specify any of --prompt_tune, --head_tune or --transform_tune.

Results

For all results, please check out Table 3 and Table 4 of the paper.

Owner
Sewon Min
PhD student @uwnlp
Sewon Min
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022